// Note: For maximum-speed code, see "Optimizing Code" on the Emscripten wiki, https://github.com/kripken/emscripten/wiki/Optimizing-Code // Note: Some Emscripten settings may limit the speed of the generated code. try { this['Module'] = Module; Module.test; } catch(e) { this['Module'] = Module = {}; } // The environment setup code below is customized to use Module. // *** Environment setup code *** var ENVIRONMENT_IS_NODE = typeof process === 'object' && typeof require === 'function'; var ENVIRONMENT_IS_WEB = typeof window === 'object'; var ENVIRONMENT_IS_WORKER = typeof importScripts === 'function'; var ENVIRONMENT_IS_SHELL = !ENVIRONMENT_IS_WEB && !ENVIRONMENT_IS_NODE && !ENVIRONMENT_IS_WORKER; if (typeof module === "object") { module.exports = Module; } if (ENVIRONMENT_IS_NODE) { // Expose functionality in the same simple way that the shells work // Note that we pollute the global namespace here, otherwise we break in node Module['print'] = function(x) { process['stdout'].write(x + '\n'); }; Module['printErr'] = function(x) { process['stderr'].write(x + '\n'); }; var nodeFS = require('fs'); var nodePath = require('path'); Module['read'] = function(filename, binary) { filename = nodePath['normalize'](filename); var ret = nodeFS['readFileSync'](filename); // The path is absolute if the normalized version is the same as the resolved. if (!ret && filename != nodePath['resolve'](filename)) { filename = path.join(__dirname, '..', 'src', filename); ret = nodeFS['readFileSync'](filename); } if (ret && !binary) ret = ret.toString(); return ret; }; Module['readBinary'] = function(filename) { return Module['read'](filename, true) }; Module['load'] = function(f) { globalEval(read(f)); }; if (!Module['arguments']) { Module['arguments'] = process['argv'].slice(2); } } if (ENVIRONMENT_IS_SHELL) { Module['print'] = print; if (typeof printErr != 'undefined') Module['printErr'] = printErr; // not present in v8 or older sm Module['read'] = read; Module['readBinary'] = function(f) { return read(f, 'binary'); }; if (!Module['arguments']) { if (typeof scriptArgs != 'undefined') { Module['arguments'] = scriptArgs; } else if (typeof arguments != 'undefined') { Module['arguments'] = arguments; } } } if (ENVIRONMENT_IS_WEB && !ENVIRONMENT_IS_WORKER) { if (!Module['print']) { Module['print'] = function(x) { console.log(x); }; } if (!Module['printErr']) { Module['printErr'] = function(x) { console.log(x); }; } } if (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER) { Module['read'] = function(url) { var xhr = new XMLHttpRequest(); xhr.open('GET', url, false); xhr.send(null); return xhr.responseText; }; if (!Module['arguments']) { if (typeof arguments != 'undefined') { Module['arguments'] = arguments; } } } if (ENVIRONMENT_IS_WORKER) { // We can do very little here... var TRY_USE_DUMP = false; if (!Module['print']) { Module['print'] = (TRY_USE_DUMP && (typeof(dump) !== "undefined") ? (function(x) { dump(x); }) : (function(x) { // self.postMessage(x); // enable this if you want stdout to be sent as messages })); } Module['load'] = importScripts; } if (!ENVIRONMENT_IS_WORKER && !ENVIRONMENT_IS_WEB && !ENVIRONMENT_IS_NODE && !ENVIRONMENT_IS_SHELL) { // Unreachable because SHELL is dependant on the others throw 'Unknown runtime environment. Where are we?'; } function globalEval(x) { eval.call(null, x); } if (!Module['load'] == 'undefined' && Module['read']) { Module['load'] = function(f) { globalEval(Module['read'](f)); }; } if (!Module['print']) { Module['print'] = function(){}; } if (!Module['printErr']) { Module['printErr'] = Module['print']; } if (!Module['arguments']) { Module['arguments'] = []; } // *** Environment setup code *** // Closure helpers Module.print = Module['print']; Module.printErr = Module['printErr']; // Callbacks if (!Module['preRun']) Module['preRun'] = []; if (!Module['postRun']) Module['postRun'] = []; // === Auto-generated preamble library stuff === //======================================== // Runtime code shared with compiler //======================================== var Runtime = { stackSave: function () { return STACKTOP; }, stackRestore: function (stackTop) { STACKTOP = stackTop; }, forceAlign: function (target, quantum) { quantum = quantum || 4; if (quantum == 1) return target; if (isNumber(target) && isNumber(quantum)) { return Math.ceil(target/quantum)*quantum; } else if (isNumber(quantum) && isPowerOfTwo(quantum)) { var logg = log2(quantum); return '((((' +target + ')+' + (quantum-1) + ')>>' + logg + ')<<' + logg + ')'; } return 'Math.ceil((' + target + ')/' + quantum + ')*' + quantum; }, isNumberType: function (type) { return type in Runtime.INT_TYPES || type in Runtime.FLOAT_TYPES; }, isPointerType: function isPointerType(type) { return type[type.length-1] == '*'; }, isStructType: function isStructType(type) { if (isPointerType(type)) return false; if (isArrayType(type)) return true; if (/?/.test(type)) return true; // { i32, i8 } etc. - anonymous struct types // See comment in isStructPointerType() return type[0] == '%'; }, INT_TYPES: {"i1":0,"i8":0,"i16":0,"i32":0,"i64":0}, FLOAT_TYPES: {"float":0,"double":0}, or64: function (x, y) { var l = (x | 0) | (y | 0); var h = (Math.round(x / 4294967296) | Math.round(y / 4294967296)) * 4294967296; return l + h; }, and64: function (x, y) { var l = (x | 0) & (y | 0); var h = (Math.round(x / 4294967296) & Math.round(y / 4294967296)) * 4294967296; return l + h; }, xor64: function (x, y) { var l = (x | 0) ^ (y | 0); var h = (Math.round(x / 4294967296) ^ Math.round(y / 4294967296)) * 4294967296; return l + h; }, getNativeTypeSize: function (type, quantumSize) { if (Runtime.QUANTUM_SIZE == 1) return 1; var size = { '%i1': 1, '%i8': 1, '%i16': 2, '%i32': 4, '%i64': 8, "%float": 4, "%double": 8 }['%'+type]; // add '%' since float and double confuse Closure compiler as keys, and also spidermonkey as a compiler will remove 's from '_i8' etc if (!size) { if (type.charAt(type.length-1) == '*') { size = Runtime.QUANTUM_SIZE; // A pointer } else if (type[0] == 'i') { var bits = parseInt(type.substr(1)); assert(bits % 8 == 0); size = bits/8; } } return size; }, getNativeFieldSize: function (type) { return Math.max(Runtime.getNativeTypeSize(type), Runtime.QUANTUM_SIZE); }, dedup: function dedup(items, ident) { var seen = {}; if (ident) { return items.filter(function(item) { if (seen[item[ident]]) return false; seen[item[ident]] = true; return true; }); } else { return items.filter(function(item) { if (seen[item]) return false; seen[item] = true; return true; }); } }, set: function set() { var args = typeof arguments[0] === 'object' ? arguments[0] : arguments; var ret = {}; for (var i = 0; i < args.length; i++) { ret[args[i]] = 0; } return ret; }, STACK_ALIGN: 8, getAlignSize: function (type, size, vararg) { // we align i64s and doubles on 64-bit boundaries, unlike x86 if (type == 'i64' || type == 'double' || vararg) return 8; if (!type) return Math.min(size, 8); // align structures internally to 64 bits return Math.min(size || (type ? Runtime.getNativeFieldSize(type) : 0), Runtime.QUANTUM_SIZE); }, calculateStructAlignment: function calculateStructAlignment(type) { type.flatSize = 0; type.alignSize = 0; var diffs = []; var prev = -1; type.flatIndexes = type.fields.map(function(field) { var size, alignSize; if (Runtime.isNumberType(field) || Runtime.isPointerType(field)) { size = Runtime.getNativeTypeSize(field); // pack char; char; in structs, also char[X]s. alignSize = Runtime.getAlignSize(field, size); } else if (Runtime.isStructType(field)) { size = Types.types[field].flatSize; alignSize = Runtime.getAlignSize(null, Types.types[field].alignSize); } else if (field[0] == 'b') { // bN, large number field, like a [N x i8] size = field.substr(1)|0; alignSize = 1; } else { throw 'Unclear type in struct: ' + field + ', in ' + type.name_ + ' :: ' + dump(Types.types[type.name_]); } if (type.packed) alignSize = 1; type.alignSize = Math.max(type.alignSize, alignSize); var curr = Runtime.alignMemory(type.flatSize, alignSize); // if necessary, place this on aligned memory type.flatSize = curr + size; if (prev >= 0) { diffs.push(curr-prev); } prev = curr; return curr; }); type.flatSize = Runtime.alignMemory(type.flatSize, type.alignSize); if (diffs.length == 0) { type.flatFactor = type.flatSize; } else if (Runtime.dedup(diffs).length == 1) { type.flatFactor = diffs[0]; } type.needsFlattening = (type.flatFactor != 1); return type.flatIndexes; }, generateStructInfo: function (struct, typeName, offset) { var type, alignment; if (typeName) { offset = offset || 0; type = (typeof Types === 'undefined' ? Runtime.typeInfo : Types.types)[typeName]; if (!type) return null; if (type.fields.length != struct.length) { printErr('Number of named fields must match the type for ' + typeName + ': possibly duplicate struct names. Cannot return structInfo'); return null; } alignment = type.flatIndexes; } else { var type = { fields: struct.map(function(item) { return item[0] }) }; alignment = Runtime.calculateStructAlignment(type); } var ret = { __size__: type.flatSize }; if (typeName) { struct.forEach(function(item, i) { if (typeof item === 'string') { ret[item] = alignment[i] + offset; } else { // embedded struct var key; for (var k in item) key = k; ret[key] = Runtime.generateStructInfo(item[key], type.fields[i], alignment[i]); } }); } else { struct.forEach(function(item, i) { ret[item[1]] = alignment[i]; }); } return ret; }, dynCall: function (sig, ptr, args) { if (args && args.length) { if (!args.splice) args = Array.prototype.slice.call(args); args.splice(0, 0, ptr); return Module['dynCall_' + sig].apply(null, args); } else { return Module['dynCall_' + sig].call(null, ptr); } }, functionPointers: [], addFunction: function (func) { for (var i = 0; i < Runtime.functionPointers.length; i++) { if (!Runtime.functionPointers[i]) { Runtime.functionPointers[i] = func; return 2 + 2*i; } } throw 'Finished up all reserved function pointers. Use a higher value for RESERVED_FUNCTION_POINTERS.'; }, removeFunction: function (index) { Runtime.functionPointers[(index-2)/2] = null; }, warnOnce: function (text) { if (!Runtime.warnOnce.shown) Runtime.warnOnce.shown = {}; if (!Runtime.warnOnce.shown[text]) { Runtime.warnOnce.shown[text] = 1; Module.printErr(text); } }, funcWrappers: {}, getFuncWrapper: function (func, sig) { assert(sig); if (!Runtime.funcWrappers[func]) { Runtime.funcWrappers[func] = function() { return Runtime.dynCall(sig, func, arguments); }; } return Runtime.funcWrappers[func]; }, UTF8Processor: function () { var buffer = []; var needed = 0; this.processCChar = function (code) { code = code & 0xff; if (needed) { buffer.push(code); needed--; } if (buffer.length == 0) { if (code < 128) return String.fromCharCode(code); buffer.push(code); if (code > 191 && code < 224) { needed = 1; } else { needed = 2; } return ''; } if (needed > 0) return ''; var c1 = buffer[0]; var c2 = buffer[1]; var c3 = buffer[2]; var ret; if (c1 > 191 && c1 < 224) { ret = String.fromCharCode(((c1 & 31) << 6) | (c2 & 63)); } else { ret = String.fromCharCode(((c1 & 15) << 12) | ((c2 & 63) << 6) | (c3 & 63)); } buffer.length = 0; return ret; } this.processJSString = function(string) { string = unescape(encodeURIComponent(string)); var ret = []; for (var i = 0; i < string.length; i++) { ret.push(string.charCodeAt(i)); } return ret; } }, stackAlloc: function (size) { var ret = STACKTOP;STACKTOP = (STACKTOP + size)|0;STACKTOP = ((((STACKTOP)+7)>>3)<<3); return ret; }, staticAlloc: function (size) { var ret = STATICTOP;STATICTOP = (STATICTOP + size)|0;STATICTOP = ((((STATICTOP)+7)>>3)<<3); return ret; }, dynamicAlloc: function (size) { var ret = DYNAMICTOP;DYNAMICTOP = (DYNAMICTOP + size)|0;DYNAMICTOP = ((((DYNAMICTOP)+7)>>3)<<3); if (DYNAMICTOP >= TOTAL_MEMORY) enlargeMemory();; return ret; }, alignMemory: function (size,quantum) { var ret = size = Math.ceil((size)/(quantum ? quantum : 8))*(quantum ? quantum : 8); return ret; }, makeBigInt: function (low,high,unsigned) { var ret = (unsigned ? ((+(((low)>>>(0))))+((+(((high)>>>(0))))*(+(4294967296)))) : ((+(((low)>>>(0))))+((+(((high)|(0))))*(+(4294967296))))); return ret; }, GLOBAL_BASE: 8, QUANTUM_SIZE: 4, __dummy__: 0 } //======================================== // Runtime essentials //======================================== var __THREW__ = 0; // Used in checking for thrown exceptions. var ABORT = false; // whether we are quitting the application. no code should run after this. set in exit() and abort() var undef = 0; // tempInt is used for 32-bit signed values or smaller. tempBigInt is used // for 32-bit unsigned values or more than 32 bits. TODO: audit all uses of tempInt var tempValue, tempInt, tempBigInt, tempInt2, tempBigInt2, tempPair, tempBigIntI, tempBigIntR, tempBigIntS, tempBigIntP, tempBigIntD; var tempI64, tempI64b; var tempRet0, tempRet1, tempRet2, tempRet3, tempRet4, tempRet5, tempRet6, tempRet7, tempRet8, tempRet9; function abort(text) { Module.print(text + ':\n' + (new Error).stack); ABORT = true; throw "Assertion: " + text; } function assert(condition, text) { if (!condition) { abort('Assertion failed: ' + text); } } var globalScope = this; // C calling interface. A convenient way to call C functions (in C files, or // defined with extern "C"). // // Note: LLVM optimizations can inline and remove functions, after which you will not be // able to call them. Closure can also do so. To avoid that, add your function to // the exports using something like // // -s EXPORTED_FUNCTIONS='["_main", "_myfunc"]' // // @param ident The name of the C function (note that C++ functions will be name-mangled - use extern "C") // @param returnType The return type of the function, one of the JS types 'number', 'string' or 'array' (use 'number' for any C pointer, and // 'array' for JavaScript arrays and typed arrays). // @param argTypes An array of the types of arguments for the function (if there are no arguments, this can be ommitted). Types are as in returnType, // except that 'array' is not possible (there is no way for us to know the length of the array) // @param args An array of the arguments to the function, as native JS values (as in returnType) // Note that string arguments will be stored on the stack (the JS string will become a C string on the stack). // @return The return value, as a native JS value (as in returnType) function ccall(ident, returnType, argTypes, args) { return ccallFunc(getCFunc(ident), returnType, argTypes, args); } Module["ccall"] = ccall; // Returns the C function with a specified identifier (for C++, you need to do manual name mangling) function getCFunc(ident) { try { var func = globalScope['Module']['_' + ident]; // closure exported function if (!func) func = eval('_' + ident); // explicit lookup } catch(e) { } assert(func, 'Cannot call unknown function ' + ident + ' (perhaps LLVM optimizations or closure removed it?)'); return func; } // Internal function that does a C call using a function, not an identifier function ccallFunc(func, returnType, argTypes, args) { var stack = 0; function toC(value, type) { if (type == 'string') { if (value === null || value === undefined || value === 0) return 0; // null string if (!stack) stack = Runtime.stackSave(); var ret = Runtime.stackAlloc(value.length+1); writeStringToMemory(value, ret); return ret; } else if (type == 'array') { if (!stack) stack = Runtime.stackSave(); var ret = Runtime.stackAlloc(value.length); writeArrayToMemory(value, ret); return ret; } return value; } function fromC(value, type) { if (type == 'string') { return Pointer_stringify(value); } assert(type != 'array'); return value; } var i = 0; var cArgs = args ? args.map(function(arg) { return toC(arg, argTypes[i++]); }) : []; var ret = fromC(func.apply(null, cArgs), returnType); if (stack) Runtime.stackRestore(stack); return ret; } // Returns a native JS wrapper for a C function. This is similar to ccall, but // returns a function you can call repeatedly in a normal way. For example: // // var my_function = cwrap('my_c_function', 'number', ['number', 'number']); // alert(my_function(5, 22)); // alert(my_function(99, 12)); // function cwrap(ident, returnType, argTypes) { var func = getCFunc(ident); return function() { return ccallFunc(func, returnType, argTypes, Array.prototype.slice.call(arguments)); } } Module["cwrap"] = cwrap; // Sets a value in memory in a dynamic way at run-time. Uses the // type data. This is the same as makeSetValue, except that // makeSetValue is done at compile-time and generates the needed // code then, whereas this function picks the right code at // run-time. // Note that setValue and getValue only do *aligned* writes and reads! // Note that ccall uses JS types as for defining types, while setValue and // getValue need LLVM types ('i8', 'i32') - this is a lower-level operation function setValue(ptr, value, type, noSafe) { type = type || 'i8'; if (type.charAt(type.length-1) === '*') type = 'i32'; // pointers are 32-bit switch(type) { case 'i1': HEAP8[(ptr)]=value; break; case 'i8': HEAP8[(ptr)]=value; break; case 'i16': HEAP16[((ptr)>>1)]=value; break; case 'i32': HEAP32[((ptr)>>2)]=value; break; case 'i64': (tempI64 = [value>>>0,Math.min(Math.floor((value)/(+(4294967296))), (+(4294967295)))>>>0],HEAP32[((ptr)>>2)]=tempI64[0],HEAP32[(((ptr)+(4))>>2)]=tempI64[1]); break; case 'float': HEAPF32[((ptr)>>2)]=value; break; case 'double': HEAPF64[((ptr)>>3)]=value; break; default: abort('invalid type for setValue: ' + type); } } Module['setValue'] = setValue; // Parallel to setValue. function getValue(ptr, type, noSafe) { type = type || 'i8'; if (type.charAt(type.length-1) === '*') type = 'i32'; // pointers are 32-bit switch(type) { case 'i1': return HEAP8[(ptr)]; case 'i8': return HEAP8[(ptr)]; case 'i16': return HEAP16[((ptr)>>1)]; case 'i32': return HEAP32[((ptr)>>2)]; case 'i64': return HEAP32[((ptr)>>2)]; case 'float': return HEAPF32[((ptr)>>2)]; case 'double': return HEAPF64[((ptr)>>3)]; default: abort('invalid type for setValue: ' + type); } return null; } Module['getValue'] = getValue; var ALLOC_NORMAL = 0; // Tries to use _malloc() var ALLOC_STACK = 1; // Lives for the duration of the current function call var ALLOC_STATIC = 2; // Cannot be freed var ALLOC_DYNAMIC = 3; // Cannot be freed except through sbrk var ALLOC_NONE = 4; // Do not allocate Module['ALLOC_NORMAL'] = ALLOC_NORMAL; Module['ALLOC_STACK'] = ALLOC_STACK; Module['ALLOC_STATIC'] = ALLOC_STATIC; Module['ALLOC_DYNAMIC'] = ALLOC_DYNAMIC; Module['ALLOC_NONE'] = ALLOC_NONE; // allocate(): This is for internal use. You can use it yourself as well, but the interface // is a little tricky (see docs right below). The reason is that it is optimized // for multiple syntaxes to save space in generated code. So you should // normally not use allocate(), and instead allocate memory using _malloc(), // initialize it with setValue(), and so forth. // @slab: An array of data, or a number. If a number, then the size of the block to allocate, // in *bytes* (note that this is sometimes confusing: the next parameter does not // affect this!) // @types: Either an array of types, one for each byte (or 0 if no type at that position), // or a single type which is used for the entire block. This only matters if there // is initial data - if @slab is a number, then this does not matter at all and is // ignored. // @allocator: How to allocate memory, see ALLOC_* function allocate(slab, types, allocator, ptr) { var zeroinit, size; if (typeof slab === 'number') { zeroinit = true; size = slab; } else { zeroinit = false; size = slab.length; } var singleType = typeof types === 'string' ? types : null; var ret; if (allocator == ALLOC_NONE) { ret = ptr; } else { ret = [_malloc, Runtime.stackAlloc, Runtime.staticAlloc, Runtime.dynamicAlloc][allocator === undefined ? ALLOC_STATIC : allocator](Math.max(size, singleType ? 1 : types.length)); } if (zeroinit) { var ptr = ret, stop; assert((ret & 3) == 0); stop = ret + (size & ~3); for (; ptr < stop; ptr += 4) { HEAP32[((ptr)>>2)]=0; } stop = ret + size; while (ptr < stop) { HEAP8[((ptr++)|0)]=0; } return ret; } if (singleType === 'i8') { if (slab.subarray || slab.slice) { HEAPU8.set(slab, ret); } else { HEAPU8.set(new Uint8Array(slab), ret); } return ret; } var i = 0, type, typeSize, previousType; while (i < size) { var curr = slab[i]; if (typeof curr === 'function') { curr = Runtime.getFunctionIndex(curr); } type = singleType || types[i]; if (type === 0) { i++; continue; } if (type == 'i64') type = 'i32'; // special case: we have one i32 here, and one i32 later setValue(ret+i, curr, type); // no need to look up size unless type changes, so cache it if (previousType !== type) { typeSize = Runtime.getNativeTypeSize(type); previousType = type; } i += typeSize; } return ret; } Module['allocate'] = allocate; function Pointer_stringify(ptr, /* optional */ length) { // Find the length, and check for UTF while doing so var hasUtf = false; var t; var i = 0; while (1) { t = HEAPU8[(((ptr)+(i))|0)]; if (t >= 128) hasUtf = true; else if (t == 0 && !length) break; i++; if (length && i == length) break; } if (!length) length = i; var ret = ''; if (!hasUtf) { var MAX_CHUNK = 1024; // split up into chunks, because .apply on a huge string can overflow the stack var curr; while (length > 0) { curr = String.fromCharCode.apply(String, HEAPU8.subarray(ptr, ptr + Math.min(length, MAX_CHUNK))); ret = ret ? ret + curr : curr; ptr += MAX_CHUNK; length -= MAX_CHUNK; } return ret; } var utf8 = new Runtime.UTF8Processor(); for (i = 0; i < length; i++) { t = HEAPU8[(((ptr)+(i))|0)]; ret += utf8.processCChar(t); } return ret; } Module['Pointer_stringify'] = Pointer_stringify; // Memory management var PAGE_SIZE = 4096; function alignMemoryPage(x) { return ((x+4095)>>12)<<12; } var HEAP; var HEAP8, HEAPU8, HEAP16, HEAPU16, HEAP32, HEAPU32, HEAPF32, HEAPF64; var STATIC_BASE = 0, STATICTOP = 0, staticSealed = false; // static area var STACK_BASE = 0, STACKTOP = 0, STACK_MAX = 0; // stack area var DYNAMIC_BASE = 0, DYNAMICTOP = 0; // dynamic area handled by sbrk function enlargeMemory() { abort('Cannot enlarge memory arrays in asm.js. Either (1) compile with -s TOTAL_MEMORY=X with X higher than the current value, or (2) set Module.TOTAL_MEMORY before the program runs.'); } var TOTAL_STACK = Module['TOTAL_STACK'] || 5242880; var TOTAL_MEMORY = Module['TOTAL_MEMORY'] || 16777216; var FAST_MEMORY = Module['FAST_MEMORY'] || 2097152; // Initialize the runtime's memory // check for full engine support (use string 'subarray' to avoid closure compiler confusion) assert(!!Int32Array && !!Float64Array && !!(new Int32Array(1)['subarray']) && !!(new Int32Array(1)['set']), 'Cannot fallback to non-typed array case: Code is too specialized'); var buffer = new ArrayBuffer(TOTAL_MEMORY); HEAP8 = new Int8Array(buffer); HEAP16 = new Int16Array(buffer); HEAP32 = new Int32Array(buffer); HEAPU8 = new Uint8Array(buffer); HEAPU16 = new Uint16Array(buffer); HEAPU32 = new Uint32Array(buffer); HEAPF32 = new Float32Array(buffer); HEAPF64 = new Float64Array(buffer); // Endianness check (note: assumes compiler arch was little-endian) HEAP32[0] = 255; assert(HEAPU8[0] === 255 && HEAPU8[3] === 0, 'Typed arrays 2 must be run on a little-endian system'); Module['HEAP'] = HEAP; Module['HEAP8'] = HEAP8; Module['HEAP16'] = HEAP16; Module['HEAP32'] = HEAP32; Module['HEAPU8'] = HEAPU8; Module['HEAPU16'] = HEAPU16; Module['HEAPU32'] = HEAPU32; Module['HEAPF32'] = HEAPF32; Module['HEAPF64'] = HEAPF64; function callRuntimeCallbacks(callbacks) { while(callbacks.length > 0) { var callback = callbacks.shift(); if (typeof callback == 'function') { callback(); continue; } var func = callback.func; if (typeof func === 'number') { if (callback.arg === undefined) { Runtime.dynCall('v', func); } else { Runtime.dynCall('vi', func, [callback.arg]); } } else { func(callback.arg === undefined ? null : callback.arg); } } } var __ATINIT__ = []; // functions called during startup var __ATMAIN__ = []; // functions called when main() is to be run var __ATEXIT__ = []; // functions called during shutdown var runtimeInitialized = false; function ensureInitRuntime() { if (runtimeInitialized) return; runtimeInitialized = true; callRuntimeCallbacks(__ATINIT__); } function preMain() { callRuntimeCallbacks(__ATMAIN__); } function exitRuntime() { callRuntimeCallbacks(__ATEXIT__); } // Tools // This processes a JS string into a C-line array of numbers, 0-terminated. // For LLVM-originating strings, see parser.js:parseLLVMString function function intArrayFromString(stringy, dontAddNull, length /* optional */) { var ret = (new Runtime.UTF8Processor()).processJSString(stringy); if (length) { ret.length = length; } if (!dontAddNull) { ret.push(0); } return ret; } Module['intArrayFromString'] = intArrayFromString; function intArrayToString(array) { var ret = []; for (var i = 0; i < array.length; i++) { var chr = array[i]; if (chr > 0xFF) { chr &= 0xFF; } ret.push(String.fromCharCode(chr)); } return ret.join(''); } Module['intArrayToString'] = intArrayToString; // Write a Javascript array to somewhere in the heap function writeStringToMemory(string, buffer, dontAddNull) { var array = intArrayFromString(string, dontAddNull); var i = 0; while (i < array.length) { var chr = array[i]; HEAP8[(((buffer)+(i))|0)]=chr i = i + 1; } } Module['writeStringToMemory'] = writeStringToMemory; function writeArrayToMemory(array, buffer) { for (var i = 0; i < array.length; i++) { HEAP8[(((buffer)+(i))|0)]=array[i]; } } Module['writeArrayToMemory'] = writeArrayToMemory; function unSign(value, bits, ignore, sig) { if (value >= 0) { return value; } return bits <= 32 ? 2*Math.abs(1 << (bits-1)) + value // Need some trickery, since if bits == 32, we are right at the limit of the bits JS uses in bitshifts : Math.pow(2, bits) + value; } function reSign(value, bits, ignore, sig) { if (value <= 0) { return value; } var half = bits <= 32 ? Math.abs(1 << (bits-1)) // abs is needed if bits == 32 : Math.pow(2, bits-1); if (value >= half && (bits <= 32 || value > half)) { // for huge values, we can hit the precision limit and always get true here. so don't do that // but, in general there is no perfect solution here. With 64-bit ints, we get rounding and errors // TODO: In i64 mode 1, resign the two parts separately and safely value = -2*half + value; // Cannot bitshift half, as it may be at the limit of the bits JS uses in bitshifts } return value; } if (!Math['imul']) Math['imul'] = function(a, b) { var ah = a >>> 16; var al = a & 0xffff; var bh = b >>> 16; var bl = b & 0xffff; return (al*bl + ((ah*bl + al*bh) << 16))|0; }; // A counter of dependencies for calling run(). If we need to // do asynchronous work before running, increment this and // decrement it. Incrementing must happen in a place like // PRE_RUN_ADDITIONS (used by emcc to add file preloading). // Note that you can add dependencies in preRun, even though // it happens right before run - run will be postponed until // the dependencies are met. var runDependencies = 0; var runDependencyTracking = {}; var calledInit = false, calledRun = false; var runDependencyWatcher = null; function addRunDependency(id) { runDependencies++; if (Module['monitorRunDependencies']) { Module['monitorRunDependencies'](runDependencies); } if (id) { assert(!runDependencyTracking[id]); runDependencyTracking[id] = 1; } else { Module.printErr('warning: run dependency added without ID'); } } Module['addRunDependency'] = addRunDependency; function removeRunDependency(id) { runDependencies--; if (Module['monitorRunDependencies']) { Module['monitorRunDependencies'](runDependencies); } if (id) { assert(runDependencyTracking[id]); delete runDependencyTracking[id]; } else { Module.printErr('warning: run dependency removed without ID'); } if (runDependencies == 0) { if (runDependencyWatcher !== null) { clearInterval(runDependencyWatcher); runDependencyWatcher = null; } // If run has never been called, and we should call run (INVOKE_RUN is true, and Module.noInitialRun is not false) if (!calledRun && shouldRunNow) run(); } } Module['removeRunDependency'] = removeRunDependency; Module["preloadedImages"] = {}; // maps url to image data Module["preloadedAudios"] = {}; // maps url to audio data function addPreRun(func) { if (!Module['preRun']) Module['preRun'] = []; else if (typeof Module['preRun'] == 'function') Module['preRun'] = [Module['preRun']]; Module['preRun'].push(func); } var awaitingMemoryInitializer = false; function loadMemoryInitializer(filename) { function applyData(data) { HEAPU8.set(data, STATIC_BASE); runPostSets(); } // always do this asynchronously, to keep shell and web as similar as possible addPreRun(function() { if (ENVIRONMENT_IS_NODE || ENVIRONMENT_IS_SHELL) { applyData(Module['readBinary'](filename)); } else { Browser.asyncLoad(filename, function(data) { applyData(data); }, function(data) { throw 'could not load memory initializer ' + filename; }); } }); awaitingMemoryInitializer = false; } // === Body === STATIC_BASE = 8; STATICTOP = STATIC_BASE + 0; /* no memory initializer */ function runPostSets() { } if (!awaitingMemoryInitializer) runPostSets(); var tempDoublePtr = Runtime.alignMemory(allocate(12, "i8", ALLOC_STATIC), 8); assert(tempDoublePtr % 8 == 0); function copyTempFloat(ptr) { // functions, because inlining this code increases code size too much HEAP8[tempDoublePtr] = HEAP8[ptr]; HEAP8[tempDoublePtr+1] = HEAP8[ptr+1]; HEAP8[tempDoublePtr+2] = HEAP8[ptr+2]; HEAP8[tempDoublePtr+3] = HEAP8[ptr+3]; } function copyTempDouble(ptr) { HEAP8[tempDoublePtr] = HEAP8[ptr]; HEAP8[tempDoublePtr+1] = HEAP8[ptr+1]; HEAP8[tempDoublePtr+2] = HEAP8[ptr+2]; HEAP8[tempDoublePtr+3] = HEAP8[ptr+3]; HEAP8[tempDoublePtr+4] = HEAP8[ptr+4]; HEAP8[tempDoublePtr+5] = HEAP8[ptr+5]; HEAP8[tempDoublePtr+6] = HEAP8[ptr+6]; HEAP8[tempDoublePtr+7] = HEAP8[ptr+7]; } function _crypto_sign_ed25519_ref10_ge_scalarmult_base() { Module['printErr']('missing function: crypto_sign_ed25519_ref10_ge_scalarmult_base'); abort(-1); } function _crypto_sign_ed25519_ref10_ge_p3_tobytes() { Module['printErr']('missing function: crypto_sign_ed25519_ref10_ge_p3_tobytes'); abort(-1); } function _crypto_sign_ed25519_ref10_fe_frombytes() { Module['printErr']('missing function: crypto_sign_ed25519_ref10_fe_frombytes'); abort(-1); } function _crypto_sign_ed25519_ref10_fe_1() { Module['printErr']('missing function: crypto_sign_ed25519_ref10_fe_1'); abort(-1); } function _crypto_sign_ed25519_ref10_fe_add() { Module['printErr']('missing function: crypto_sign_ed25519_ref10_fe_add'); abort(-1); } function _crypto_sign_ed25519_ref10_fe_sub() { Module['printErr']('missing function: crypto_sign_ed25519_ref10_fe_sub'); abort(-1); } function _crypto_sign_ed25519_ref10_fe_invert() { Module['printErr']('missing function: crypto_sign_ed25519_ref10_fe_invert'); abort(-1); } function _crypto_sign_ed25519_ref10_fe_mul() { Module['printErr']('missing function: crypto_sign_ed25519_ref10_fe_mul'); abort(-1); } function _crypto_sign_ed25519_ref10_fe_tobytes() { Module['printErr']('missing function: crypto_sign_ed25519_ref10_fe_tobytes'); abort(-1); } Module["_memcpy"] = _memcpy; Module["_memmove"] = _memmove;var _llvm_memmove_p0i8_p0i8_i32=_memmove; function _crypto_sign_edwards25519sha512batch_ref10_open() { Module['printErr']('missing function: crypto_sign_edwards25519sha512batch_ref10_open'); abort(-1); } function _sph_sha512_init() { Module['printErr']('missing function: sph_sha512_init'); abort(-1); } function _sph_sha384() { Module['printErr']('missing function: sph_sha384'); abort(-1); } function _sph_sha512_close() { Module['printErr']('missing function: sph_sha512_close'); abort(-1); } function _crypto_sign_ed25519_ref10_sc_reduce() { Module['printErr']('missing function: crypto_sign_ed25519_ref10_sc_reduce'); abort(-1); } function _crypto_sign_ed25519_ref10_sc_muladd() { Module['printErr']('missing function: crypto_sign_ed25519_ref10_sc_muladd'); abort(-1); } function _llvm_lifetime_start() {} function _llvm_lifetime_end() {} var _llvm_memcpy_p0i8_p0i8_i32=_memcpy; Module["_memset"] = _memset; function _malloc(bytes) { /* Over-allocate to make sure it is byte-aligned by 8. * This will leak memory, but this is only the dummy * implementation (replaced by dlmalloc normally) so * not an issue. */ var ptr = Runtime.dynamicAlloc(bytes + 8); return (ptr+8) & 0xFFFFFFF8; } function _free() { } Module["_strlen"] = _strlen; var Browser={mainLoop:{scheduler:null,shouldPause:false,paused:false,queue:[],pause:function () { Browser.mainLoop.shouldPause = true; },resume:function () { if (Browser.mainLoop.paused) { Browser.mainLoop.paused = false; Browser.mainLoop.scheduler(); } Browser.mainLoop.shouldPause = false; },updateStatus:function () { if (Module['setStatus']) { var message = Module['statusMessage'] || 'Please wait...'; var remaining = Browser.mainLoop.remainingBlockers; var expected = Browser.mainLoop.expectedBlockers; if (remaining) { if (remaining < expected) { Module['setStatus'](message + ' (' + (expected - remaining) + '/' + expected + ')'); } else { Module['setStatus'](message); } } else { Module['setStatus'](''); } } }},isFullScreen:false,pointerLock:false,moduleContextCreatedCallbacks:[],workers:[],init:function () { if (Browser.initted) return; Browser.initted = true; try { new Blob(); Browser.hasBlobConstructor = true; } catch(e) { Browser.hasBlobConstructor = false; console.log("warning: no blob constructor, cannot create blobs with mimetypes"); } Browser.BlobBuilder = typeof MozBlobBuilder != "undefined" ? MozBlobBuilder : (typeof WebKitBlobBuilder != "undefined" ? WebKitBlobBuilder : (!Browser.hasBlobConstructor ? console.log("warning: no BlobBuilder") : null)); Browser.URLObject = typeof window != "undefined" ? (window.URL ? window.URL : window.webkitURL) : console.log("warning: cannot create object URLs"); // Support for plugins that can process preloaded files. You can add more of these to // your app by creating and appending to Module.preloadPlugins. // // Each plugin is asked if it can handle a file based on the file's name. If it can, // it is given the file's raw data. When it is done, it calls a callback with the file's // (possibly modified) data. For example, a plugin might decompress a file, or it // might create some side data structure for use later (like an Image element, etc.). function getMimetype(name) { return { 'jpg': 'image/jpeg', 'jpeg': 'image/jpeg', 'png': 'image/png', 'bmp': 'image/bmp', 'ogg': 'audio/ogg', 'wav': 'audio/wav', 'mp3': 'audio/mpeg' }[name.substr(name.lastIndexOf('.')+1)]; } if (!Module["preloadPlugins"]) Module["preloadPlugins"] = []; var imagePlugin = {}; imagePlugin['canHandle'] = function(name) { return !Module.noImageDecoding && /\.(jpg|jpeg|png|bmp)$/.exec(name); }; imagePlugin['handle'] = function(byteArray, name, onload, onerror) { var b = null; if (Browser.hasBlobConstructor) { try { b = new Blob([byteArray], { type: getMimetype(name) }); } catch(e) { Runtime.warnOnce('Blob constructor present but fails: ' + e + '; falling back to blob builder'); } } if (!b) { var bb = new Browser.BlobBuilder(); bb.append((new Uint8Array(byteArray)).buffer); // we need to pass a buffer, and must copy the array to get the right data range b = bb.getBlob(); } var url = Browser.URLObject.createObjectURL(b); var img = new Image(); img.onload = function() { assert(img.complete, 'Image ' + name + ' could not be decoded'); var canvas = document.createElement('canvas'); canvas.width = img.width; canvas.height = img.height; var ctx = canvas.getContext('2d'); ctx.drawImage(img, 0, 0); Module["preloadedImages"][name] = canvas; Browser.URLObject.revokeObjectURL(url); if (onload) onload(byteArray); }; img.onerror = function(event) { console.log('Image ' + url + ' could not be decoded'); if (onerror) onerror(); }; img.src = url; }; Module['preloadPlugins'].push(imagePlugin); var audioPlugin = {}; audioPlugin['canHandle'] = function(name) { return !Module.noAudioDecoding && name.substr(-4) in { '.ogg': 1, '.wav': 1, '.mp3': 1 }; }; audioPlugin['handle'] = function(byteArray, name, onload, onerror) { var done = false; function finish(audio) { if (done) return; done = true; Module["preloadedAudios"][name] = audio; if (onload) onload(byteArray); } function fail() { if (done) return; done = true; Module["preloadedAudios"][name] = new Audio(); // empty shim if (onerror) onerror(); } if (Browser.hasBlobConstructor) { try { var b = new Blob([byteArray], { type: getMimetype(name) }); } catch(e) { return fail(); } var url = Browser.URLObject.createObjectURL(b); // XXX we never revoke this! var audio = new Audio(); audio.addEventListener('canplaythrough', function() { finish(audio) }, false); // use addEventListener due to chromium bug 124926 audio.onerror = function(event) { if (done) return; console.log('warning: browser could not fully decode audio ' + name + ', trying slower base64 approach'); function encode64(data) { var BASE = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'; var PAD = '='; var ret = ''; var leftchar = 0; var leftbits = 0; for (var i = 0; i < data.length; i++) { leftchar = (leftchar << 8) | data[i]; leftbits += 8; while (leftbits >= 6) { var curr = (leftchar >> (leftbits-6)) & 0x3f; leftbits -= 6; ret += BASE[curr]; } } if (leftbits == 2) { ret += BASE[(leftchar&3) << 4]; ret += PAD + PAD; } else if (leftbits == 4) { ret += BASE[(leftchar&0xf) << 2]; ret += PAD; } return ret; } audio.src = 'data:audio/x-' + name.substr(-3) + ';base64,' + encode64(byteArray); finish(audio); // we don't wait for confirmation this worked - but it's worth trying }; audio.src = url; // workaround for chrome bug 124926 - we do not always get oncanplaythrough or onerror Browser.safeSetTimeout(function() { finish(audio); // try to use it even though it is not necessarily ready to play }, 10000); } else { return fail(); } }; Module['preloadPlugins'].push(audioPlugin); // Canvas event setup var canvas = Module['canvas']; canvas.requestPointerLock = canvas['requestPointerLock'] || canvas['mozRequestPointerLock'] || canvas['webkitRequestPointerLock']; canvas.exitPointerLock = document['exitPointerLock'] || document['mozExitPointerLock'] || document['webkitExitPointerLock'] || function(){}; // no-op if function does not exist canvas.exitPointerLock = canvas.exitPointerLock.bind(document); function pointerLockChange() { Browser.pointerLock = document['pointerLockElement'] === canvas || document['mozPointerLockElement'] === canvas || document['webkitPointerLockElement'] === canvas; } document.addEventListener('pointerlockchange', pointerLockChange, false); document.addEventListener('mozpointerlockchange', pointerLockChange, false); document.addEventListener('webkitpointerlockchange', pointerLockChange, false); if (Module['elementPointerLock']) { canvas.addEventListener("click", function(ev) { if (!Browser.pointerLock && canvas.requestPointerLock) { canvas.requestPointerLock(); ev.preventDefault(); } }, false); } },createContext:function (canvas, useWebGL, setInModule) { var ctx; try { if (useWebGL) { ctx = canvas.getContext('experimental-webgl', { alpha: false }); } else { ctx = canvas.getContext('2d'); } if (!ctx) throw ':('; } catch (e) { Module.print('Could not create canvas - ' + e); return null; } if (useWebGL) { // Set the background of the WebGL canvas to black canvas.style.backgroundColor = "black"; // Warn on context loss canvas.addEventListener('webglcontextlost', function(event) { alert('WebGL context lost. You will need to reload the page.'); }, false); } if (setInModule) { Module.ctx = ctx; Module.useWebGL = useWebGL; Browser.moduleContextCreatedCallbacks.forEach(function(callback) { callback() }); Browser.init(); } return ctx; },destroyContext:function (canvas, useWebGL, setInModule) {},fullScreenHandlersInstalled:false,lockPointer:undefined,resizeCanvas:undefined,requestFullScreen:function (lockPointer, resizeCanvas) { Browser.lockPointer = lockPointer; Browser.resizeCanvas = resizeCanvas; if (typeof Browser.lockPointer === 'undefined') Browser.lockPointer = true; if (typeof Browser.resizeCanvas === 'undefined') Browser.resizeCanvas = false; var canvas = Module['canvas']; function fullScreenChange() { Browser.isFullScreen = false; if ((document['webkitFullScreenElement'] || document['webkitFullscreenElement'] || document['mozFullScreenElement'] || document['mozFullscreenElement'] || document['fullScreenElement'] || document['fullscreenElement']) === canvas) { canvas.cancelFullScreen = document['cancelFullScreen'] || document['mozCancelFullScreen'] || document['webkitCancelFullScreen']; canvas.cancelFullScreen = canvas.cancelFullScreen.bind(document); if (Browser.lockPointer) canvas.requestPointerLock(); Browser.isFullScreen = true; if (Browser.resizeCanvas) Browser.setFullScreenCanvasSize(); } else if (Browser.resizeCanvas){ Browser.setWindowedCanvasSize(); } if (Module['onFullScreen']) Module['onFullScreen'](Browser.isFullScreen); } if (!Browser.fullScreenHandlersInstalled) { Browser.fullScreenHandlersInstalled = true; document.addEventListener('fullscreenchange', fullScreenChange, false); document.addEventListener('mozfullscreenchange', fullScreenChange, false); document.addEventListener('webkitfullscreenchange', fullScreenChange, false); } canvas.requestFullScreen = canvas['requestFullScreen'] || canvas['mozRequestFullScreen'] || (canvas['webkitRequestFullScreen'] ? function() { canvas['webkitRequestFullScreen'](Element['ALLOW_KEYBOARD_INPUT']) } : null); canvas.requestFullScreen(); },requestAnimationFrame:function (func) { if (!window.requestAnimationFrame) { window.requestAnimationFrame = window['requestAnimationFrame'] || window['mozRequestAnimationFrame'] || window['webkitRequestAnimationFrame'] || window['msRequestAnimationFrame'] || window['oRequestAnimationFrame'] || window['setTimeout']; } window.requestAnimationFrame(func); },safeCallback:function (func) { return function() { if (!ABORT) return func.apply(null, arguments); }; },safeRequestAnimationFrame:function (func) { return Browser.requestAnimationFrame(function() { if (!ABORT) func(); }); },safeSetTimeout:function (func, timeout) { return setTimeout(function() { if (!ABORT) func(); }, timeout); },safeSetInterval:function (func, timeout) { return setInterval(function() { if (!ABORT) func(); }, timeout); },getUserMedia:function (func) { if(!window.getUserMedia) { window.getUserMedia = navigator['getUserMedia'] || navigator['mozGetUserMedia']; } window.getUserMedia(func); },getMovementX:function (event) { return event['movementX'] || event['mozMovementX'] || event['webkitMovementX'] || 0; },getMovementY:function (event) { return event['movementY'] || event['mozMovementY'] || event['webkitMovementY'] || 0; },mouseX:0,mouseY:0,mouseMovementX:0,mouseMovementY:0,calculateMouseEvent:function (event) { // event should be mousemove, mousedown or mouseup if (Browser.pointerLock) { // When the pointer is locked, calculate the coordinates // based on the movement of the mouse. // Workaround for Firefox bug 764498 if (event.type != 'mousemove' && ('mozMovementX' in event)) { Browser.mouseMovementX = Browser.mouseMovementY = 0; } else { Browser.mouseMovementX = Browser.getMovementX(event); Browser.mouseMovementY = Browser.getMovementY(event); } Browser.mouseX = SDL.mouseX + Browser.mouseMovementX; Browser.mouseY = SDL.mouseY + Browser.mouseMovementY; } else { // Otherwise, calculate the movement based on the changes // in the coordinates. var rect = Module["canvas"].getBoundingClientRect(); var x = event.pageX - (window.scrollX + rect.left); var y = event.pageY - (window.scrollY + rect.top); // the canvas might be CSS-scaled compared to its backbuffer; // SDL-using content will want mouse coordinates in terms // of backbuffer units. var cw = Module["canvas"].width; var ch = Module["canvas"].height; x = x * (cw / rect.width); y = y * (ch / rect.height); Browser.mouseMovementX = x - Browser.mouseX; Browser.mouseMovementY = y - Browser.mouseY; Browser.mouseX = x; Browser.mouseY = y; } },xhrLoad:function (url, onload, onerror) { var xhr = new XMLHttpRequest(); xhr.open('GET', url, true); xhr.responseType = 'arraybuffer'; xhr.onload = function() { if (xhr.status == 200 || (xhr.status == 0 && xhr.response)) { // file URLs can return 0 onload(xhr.response); } else { onerror(); } }; xhr.onerror = onerror; xhr.send(null); },asyncLoad:function (url, onload, onerror, noRunDep) { Browser.xhrLoad(url, function(arrayBuffer) { assert(arrayBuffer, 'Loading data file "' + url + '" failed (no arrayBuffer).'); onload(new Uint8Array(arrayBuffer)); if (!noRunDep) removeRunDependency('al ' + url); }, function(event) { if (onerror) { onerror(); } else { throw 'Loading data file "' + url + '" failed.'; } }); if (!noRunDep) addRunDependency('al ' + url); },resizeListeners:[],updateResizeListeners:function () { var canvas = Module['canvas']; Browser.resizeListeners.forEach(function(listener) { listener(canvas.width, canvas.height); }); },setCanvasSize:function (width, height, noUpdates) { var canvas = Module['canvas']; canvas.width = width; canvas.height = height; if (!noUpdates) Browser.updateResizeListeners(); },windowedWidth:0,windowedHeight:0,setFullScreenCanvasSize:function () { var canvas = Module['canvas']; this.windowedWidth = canvas.width; this.windowedHeight = canvas.height; canvas.width = screen.width; canvas.height = screen.height; var flags = HEAPU32[((SDL.screen+Runtime.QUANTUM_SIZE*0)>>2)]; flags = flags | 0x00800000; // set SDL_FULLSCREEN flag HEAP32[((SDL.screen+Runtime.QUANTUM_SIZE*0)>>2)]=flags Browser.updateResizeListeners(); },setWindowedCanvasSize:function () { var canvas = Module['canvas']; canvas.width = this.windowedWidth; canvas.height = this.windowedHeight; var flags = HEAPU32[((SDL.screen+Runtime.QUANTUM_SIZE*0)>>2)]; flags = flags & ~0x00800000; // clear SDL_FULLSCREEN flag HEAP32[((SDL.screen+Runtime.QUANTUM_SIZE*0)>>2)]=flags Browser.updateResizeListeners(); }}; Module["requestFullScreen"] = function(lockPointer, resizeCanvas) { Browser.requestFullScreen(lockPointer, resizeCanvas) }; Module["requestAnimationFrame"] = function(func) { Browser.requestAnimationFrame(func) }; Module["pauseMainLoop"] = function() { Browser.mainLoop.pause() }; Module["resumeMainLoop"] = function() { Browser.mainLoop.resume() }; Module["getUserMedia"] = function() { Browser.getUserMedia() } STACK_BASE = STACKTOP = Runtime.alignMemory(STATICTOP); staticSealed = true; // seal the static portion of memory STACK_MAX = STACK_BASE + 5242880; DYNAMIC_BASE = DYNAMICTOP = Runtime.alignMemory(STACK_MAX); assert(DYNAMIC_BASE < TOTAL_MEMORY); // Stack must fit in TOTAL_MEMORY; allocations from here on may enlarge TOTAL_MEMORY var ctlz_i8 = allocate([8,7,6,6,5,5,5,5,4,4,4,4,4,4,4,4,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], "i8", ALLOC_DYNAMIC); var cttz_i8 = allocate([8,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,6,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,7,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,6,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0], "i8", ALLOC_DYNAMIC); var Math_min = Math.min; function invoke_ii(index,a1) { try { return Module["dynCall_ii"](index,a1); } catch(e) { if (typeof e !== 'number' && e !== 'longjmp') throw e; asm["setThrew"](1, 0); } } function invoke_v(index) { try { Module["dynCall_v"](index); } catch(e) { if (typeof e !== 'number' && e !== 'longjmp') throw e; asm["setThrew"](1, 0); } } function invoke_iii(index,a1,a2) { try { return Module["dynCall_iii"](index,a1,a2); } catch(e) { if (typeof e !== 'number' && e !== 'longjmp') throw e; asm["setThrew"](1, 0); } } function invoke_vi(index,a1) { try { Module["dynCall_vi"](index,a1); } catch(e) { if (typeof e !== 'number' && e !== 'longjmp') throw e; asm["setThrew"](1, 0); } } function asmPrintInt(x, y) { Module.print('int ' + x + ',' + y);// + ' ' + new Error().stack); } function asmPrintFloat(x, y) { Module.print('float ' + x + ',' + y);// + ' ' + new Error().stack); } // EMSCRIPTEN_START_ASM var asm=(function(global,env,buffer){"use asm";var a=new global.Int8Array(buffer);var b=new global.Int16Array(buffer);var c=new global.Int32Array(buffer);var d=new global.Uint8Array(buffer);var e=new global.Uint16Array(buffer);var f=new global.Uint32Array(buffer);var g=new global.Float32Array(buffer);var h=new global.Float64Array(buffer);var i=env.STACKTOP|0;var j=env.STACK_MAX|0;var k=env.tempDoublePtr|0;var l=env.ABORT|0;var m=env.cttz_i8|0;var n=env.ctlz_i8|0;var o=+env.NaN;var p=+env.Infinity;var q=0;var r=0;var s=0;var t=0;var u=0,v=0,w=0,x=0,y=0.0,z=0,A=0,B=0,C=0.0;var D=0;var E=0;var F=0;var G=0;var H=0;var I=0;var J=0;var K=0;var L=0;var M=0;var N=global.Math.floor;var O=global.Math.abs;var P=global.Math.sqrt;var Q=global.Math.pow;var R=global.Math.cos;var S=global.Math.sin;var T=global.Math.tan;var U=global.Math.acos;var V=global.Math.asin;var W=global.Math.atan;var X=global.Math.atan2;var Y=global.Math.exp;var Z=global.Math.log;var _=global.Math.ceil;var $=global.Math.imul;var aa=env.abort;var ab=env.assert;var ac=env.asmPrintInt;var ad=env.asmPrintFloat;var ae=env.copyTempDouble;var af=env.copyTempFloat;var ag=env.min;var ah=env.invoke_ii;var ai=env.invoke_v;var aj=env.invoke_iii;var ak=env.invoke_vi;var al=env._llvm_lifetime_end;var am=env._malloc;var an=env._crypto_sign_ed25519_ref10_fe_tobytes;var ao=env._crypto_sign_ed25519_ref10_ge_p3_tobytes;var ap=env._llvm_lifetime_start;var aq=env._crypto_sign_ed25519_ref10_fe_sub;var ar=env._sph_sha512_close;var as=env._crypto_sign_ed25519_ref10_sc_muladd;var at=env._crypto_sign_ed25519_ref10_fe_add;var au=env._free;var av=env._crypto_sign_ed25519_ref10_fe_invert;var aw=env._crypto_sign_ed25519_ref10_fe_1;var ax=env._crypto_sign_edwards25519sha512batch_ref10_open;var ay=env._crypto_sign_ed25519_ref10_fe_mul;var az=env._crypto_sign_ed25519_ref10_ge_scalarmult_base;var aA=env._crypto_sign_ed25519_ref10_fe_frombytes;var aB=env._crypto_sign_ed25519_ref10_sc_reduce;var aC=env._sph_sha384;var aD=env._sph_sha512_init; // EMSCRIPTEN_START_FUNCS function aI(a){a=a|0;var b=0;b=i;i=i+a|0;i=i+7>>3<<3;return b|0}function aJ(){return i|0}function aK(a){a=a|0;i=a}function aL(a,b){a=a|0;b=b|0;if((q|0)==0){q=a;r=b}}function aM(a){a=a|0;D=a}function aN(a){a=a|0;E=a}function aO(a){a=a|0;F=a}function aP(a){a=a|0;G=a}function aQ(a){a=a|0;H=a}function aR(a){a=a|0;I=a}function aS(a){a=a|0;J=a}function aT(a){a=a|0;K=a}function aU(a){a=a|0;L=a}function aV(a){a=a|0;M=a}function aW(b,d,e,f){b=b|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,j=0,k=0,l=0,m=0;g=i;i=i+232|0;h=g|0;j=g+160|0;k=g+224|0;l=i;i=i+(f+64|0)|0;i=i+7>>3<<3;c[k>>2]=0;c[k+4>>2]=0;m=j|0;aZ(m|0,d|0,32);az(h|0,d|0);ao(j+32|0,h|0);h=a[j+63|0]&-128;aY(l,k,e,f,0,m);aZ(b|0,l|0,64);l=b+63|0;a[l]=a[l]|h;i=g;return}function aX(b,c,d,e){b=b|0;c=c|0;d=d|0;e=e|0;var f=0,g=0,h=0,j=0,k=0,l=0,m=0,n=0;f=i;i=i+280|0;g=f+240|0;h=e+64|0;j=i;i=i+h|0;i=i+7>>3<<3;k=i;i=i+h|0;i=i+7>>3<<3;l=f|0;aA(l|0,c|0);c=f+160|0;aw(c|0);m=f+40|0;aq(m|0,l|0,c|0);n=f+80|0;at(n|0,l|0,c|0);c=f+120|0;av(c|0,n|0);n=f+200|0;ay(n|0,m|0,c|0);c=g|0;an(c|0,n|0);n=b+63|0;m=a[n]|0;l=g+31|0;a[l]=a[l]|m&-128;a[n]=m&127;aZ(j|0,b|0,64);aZ(j+64|0,d|0,e);e=ax(k|0,f+272|0,j|0,h|0,0,c|0)|0;i=f;return e|0}function aY(a,b,d,e,f,g){a=a|0;b=b|0;d=d|0;e=e|0;f=f|0;g=g|0;var h=0,j=0,k=0,l=0,m=0;h=i;i=i+720|0;j=h+560|0;k=h+400|0;aZ(k|0,g+32|0,32);l=a1(e,f,64,0)|0;c[b>>2]=l;c[b+4>>2]=D;a_(a+64|0,d|0,e|0);d=a+32|0;a_(d|0,g|0,32);b=h+432|0;m=a1(e,f,32,0)|0;f=h+200|0;aD(f|0);aC(f|0,d|0,m|0);ar(f|0,b|0);aZ(d|0,k|0,32);aB(b|0);az(j|0,b|0);ao(a|0,j|0);j=h+496|0;k=h|0;aD(k|0);aC(k|0,a|0,l|0);ar(k|0,j|0);aB(j|0);as(d|0,j|0,g|0,b|0);i=h;return 0}function aZ(b,d,e){b=b|0;d=d|0;e=e|0;var f=0;f=b|0;if((b&3)==(d&3)){while(b&3){if((e|0)==0)return f|0;a[b]=a[d]|0;b=b+1|0;d=d+1|0;e=e-1|0}while((e|0)>=4){c[b>>2]=c[d>>2];b=b+4|0;d=d+4|0;e=e-4|0}}while((e|0)>0){a[b]=a[d]|0;b=b+1|0;d=d+1|0;e=e-1|0}return f|0}function a_(b,c,d){b=b|0;c=c|0;d=d|0;if((c|0)<(b|0)&(b|0)<(c+d|0)){c=c+d|0;b=b+d|0;while((d|0)>0){b=b-1|0;c=c-1|0;d=d-1|0;a[b]=a[c]|0}}else{aZ(b,c,d)}}function a$(b,d,e){b=b|0;d=d|0;e=e|0;var f=0,g=0,h=0;f=b+e|0;if((e|0)>=20){d=d&255;e=b&3;g=d|d<<8|d<<16|d<<24;h=f&~3;if(e){e=b+4-e|0;while((b|0)<(e|0)){a[b]=d;b=b+1|0}}while((b|0)<(h|0)){c[b>>2]=g;b=b+4|0}}while((b|0)<(f|0)){a[b]=d;b=b+1|0}}function a0(b){b=b|0;var c=0;c=b;while(a[c]|0){c=c+1|0}return c-b|0}function a1(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0;e=a+c>>>0;return(D=b+d+(e>>>0>>0|0)>>>0,e|0)|0}function a2(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0;e=b-d>>>0;e=b-d-(c>>>0>a>>>0|0)>>>0;return(D=e,a-c>>>0|0)|0}function a3(a,b,c){a=a|0;b=b|0;c=c|0;if((c|0)<32){D=b<>>32-c;return a<>>c;return a>>>c|(b&(1<>>c-32|0}function a5(a,b,c){a=a|0;b=b|0;c=c|0;if((c|0)<32){D=b>>c;return a>>>c|(b&(1<>c-32|0}function a6(b){b=b|0;var c=0;c=a[n+(b>>>24)|0]|0;if((c|0)<8)return c|0;c=a[n+(b>>16&255)|0]|0;if((c|0)<8)return c+8|0;c=a[n+(b>>8&255)|0]|0;if((c|0)<8)return c+16|0;return(a[n+(b&255)|0]|0)+24|0}function a7(b){b=b|0;var c=0;c=a[m+(b&255)|0]|0;if((c|0)<8)return c|0;c=a[m+(b>>8&255)|0]|0;if((c|0)<8)return c+8|0;c=a[m+(b>>16&255)|0]|0;if((c|0)<8)return c+16|0;return(a[m+(b>>>24)|0]|0)+24|0}function a8(a,b){a=a|0;b=b|0;var c=0,d=0,e=0,f=0;c=a&65535;d=b&65535;e=$(d,c);f=a>>>16;a=(e>>>16)+$(d,f)|0;d=b>>>16;b=$(d,c);return(D=((a>>>16)+$(d,f)|0)+(((a&65535)+b|0)>>>16)|0,0|(a+b<<16|e&65535))|0}function a9(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0,g=0,h=0,i=0;e=b>>31|((b|0)<0?-1:0)<<1;f=((b|0)<0?-1:0)>>31|((b|0)<0?-1:0)<<1;g=d>>31|((d|0)<0?-1:0)<<1;h=((d|0)<0?-1:0)>>31|((d|0)<0?-1:0)<<1;i=a2(e^a,f^b,e,f)|0;b=D;a=g^e;e=h^f;f=a2(be(i,b,a2(g^c,h^d,g,h)|0,D,0)^a,D^e,a,e)|0;return(D=D,f)|0}function ba(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0,g=0,h=0,j=0,k=0,l=0,m=0;f=i;i=i+8|0;g=f|0;h=b>>31|((b|0)<0?-1:0)<<1;j=((b|0)<0?-1:0)>>31|((b|0)<0?-1:0)<<1;k=e>>31|((e|0)<0?-1:0)<<1;l=((e|0)<0?-1:0)>>31|((e|0)<0?-1:0)<<1;m=a2(h^a,j^b,h,j)|0;b=D;be(m,b,a2(k^d,l^e,k,l)|0,D,g);l=a2(c[g>>2]^h,c[g+4>>2]^j,h,j)|0;j=D;i=f;return(D=j,l)|0}function bb(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0;e=a;a=c;c=a8(e,a)|0;f=D;return(D=($(b,a)+$(d,e)|0)+f|f&0,0|c&-1)|0}function bc(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0;e=be(a,b,c,d,0)|0;return(D=D,e)|0}function bd(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0,g=0;f=i;i=i+8|0;g=f|0;be(a,b,d,e,g);i=f;return(D=c[g+4>>2]|0,c[g>>2]|0)|0}function be(a,b,d,e,f){a=a|0;b=b|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0;g=a;h=b;i=h;j=d;k=e;l=k;if((i|0)==0){m=(f|0)!=0;if((l|0)==0){if(m){c[f>>2]=(g>>>0)%(j>>>0);c[f+4>>2]=0}n=0;o=(g>>>0)/(j>>>0)>>>0;return(D=n,o)|0}else{if(!m){n=0;o=0;return(D=n,o)|0}c[f>>2]=a&-1;c[f+4>>2]=b&0;n=0;o=0;return(D=n,o)|0}}m=(l|0)==0;do{if((j|0)==0){if(m){if((f|0)!=0){c[f>>2]=(i>>>0)%(j>>>0);c[f+4>>2]=0}n=0;o=(i>>>0)/(j>>>0)>>>0;return(D=n,o)|0}if((g|0)==0){if((f|0)!=0){c[f>>2]=0;c[f+4>>2]=(i>>>0)%(l>>>0)}n=0;o=(i>>>0)/(l>>>0)>>>0;return(D=n,o)|0}p=l-1|0;if((p&l|0)==0){if((f|0)!=0){c[f>>2]=a&-1;c[f+4>>2]=p&i|b&0}n=0;o=i>>>((a7(l|0)|0)>>>0);return(D=n,o)|0}p=(a6(l|0)|0)-(a6(i|0)|0)|0;if(p>>>0<=30){q=p+1|0;r=31-p|0;s=q;t=i<>>(q>>>0);u=i>>>(q>>>0);v=0;w=g<>2]=a&-1;c[f+4>>2]=h|b&0;n=0;o=0;return(D=n,o)|0}else{if(!m){r=(a6(l|0)|0)-(a6(i|0)|0)|0;if(r>>>0<=31){q=r+1|0;p=31-r|0;x=r-31>>31;s=q;t=g>>>(q>>>0)&x|i<>>(q>>>0)&x;v=0;w=g<>2]=a&-1;c[f+4>>2]=h|b&0;n=0;o=0;return(D=n,o)|0}p=j-1|0;if((p&j|0)!=0){x=((a6(j|0)|0)+33|0)-(a6(i|0)|0)|0;q=64-x|0;r=32-x|0;y=r>>31;z=x-32|0;A=z>>31;s=x;t=r-1>>31&i>>>(z>>>0)|(i<>>(x>>>0))&A;u=A&i>>>(x>>>0);v=g<>>(z>>>0))&y|g<>31;break}if((f|0)!=0){c[f>>2]=p&g;c[f+4>>2]=0}if((j|0)==1){n=h|b&0;o=a&-1|0;return(D=n,o)|0}else{p=a7(j|0)|0;n=i>>>(p>>>0)|0;o=i<<32-p|g>>>(p>>>0)|0;return(D=n,o)|0}}}while(0);if((s|0)==0){B=w;C=v;E=u;F=t;G=0;H=0}else{g=d&-1|0;d=k|e&0;e=a1(g,d,-1,-1)|0;k=D;i=w;w=v;v=u;u=t;t=s;s=0;while(1){I=w>>>31|i<<1;J=s|w<<1;j=u<<1|i>>>31|0;a=u>>>31|v<<1|0;a2(e,k,j,a);b=D;h=b>>31|((b|0)<0?-1:0)<<1;K=h&1;L=a2(j,a,h&g,(((b|0)<0?-1:0)>>31|((b|0)<0?-1:0)<<1)&d)|0;M=D;b=t-1|0;if((b|0)==0){break}else{i=I;w=J;v=M;u=L;t=b;s=K}}B=I;C=J;E=M;F=L;G=0;H=K}K=C;C=0;if((f|0)!=0){c[f>>2]=F;c[f+4>>2]=E}n=(0|K)>>>31|(B|C)<<1|(C<<1|K>>>31)&0|G;o=(K<<1|0>>>31)&-2|H;return(D=n,o)|0}function bf(a,b){a=a|0;b=b|0;return aE[a&1](b|0)|0}function bg(a){a=a|0;aF[a&1]()}function bh(a,b,c){a=a|0;b=b|0;c=c|0;return aG[a&1](b|0,c|0)|0}function bi(a,b){a=a|0;b=b|0;aH[a&1](b|0)}function bj(a){a=a|0;aa(0);return 0}function bk(){aa(1)}function bl(a,b){a=a|0;b=b|0;aa(2);return 0}function bm(a){a=a|0;aa(3)} // EMSCRIPTEN_END_FUNCS var aE=[bj,bj];var aF=[bk,bk];var aG=[bl,bl];var aH=[bm,bm];return{_curve25519_verify:aX,_curve25519_sign:aW,_memmove:a_,_strlen:a0,_memset:a$,_memcpy:aZ,stackAlloc:aI,stackSave:aJ,stackRestore:aK,setThrew:aL,setTempRet0:aM,setTempRet1:aN,setTempRet2:aO,setTempRet3:aP,setTempRet4:aQ,setTempRet5:aR,setTempRet6:aS,setTempRet7:aT,setTempRet8:aU,setTempRet9:aV,dynCall_ii:bf,dynCall_v:bg,dynCall_iii:bh,dynCall_vi:bi}}) // EMSCRIPTEN_END_ASM ({ "Math": Math, "Int8Array": Int8Array, "Int16Array": Int16Array, "Int32Array": Int32Array, "Uint8Array": Uint8Array, "Uint16Array": Uint16Array, "Uint32Array": Uint32Array, "Float32Array": Float32Array, "Float64Array": Float64Array }, { "abort": abort, "assert": assert, "asmPrintInt": asmPrintInt, "asmPrintFloat": asmPrintFloat, "copyTempDouble": copyTempDouble, "copyTempFloat": copyTempFloat, "min": Math_min, "invoke_ii": invoke_ii, "invoke_v": invoke_v, "invoke_iii": invoke_iii, "invoke_vi": invoke_vi, "_llvm_lifetime_end": _llvm_lifetime_end, "_malloc": _malloc, "_crypto_sign_ed25519_ref10_fe_tobytes": _crypto_sign_ed25519_ref10_fe_tobytes, "_crypto_sign_ed25519_ref10_ge_p3_tobytes": _crypto_sign_ed25519_ref10_ge_p3_tobytes, "_llvm_lifetime_start": _llvm_lifetime_start, "_crypto_sign_ed25519_ref10_fe_sub": _crypto_sign_ed25519_ref10_fe_sub, "_sph_sha512_close": _sph_sha512_close, "_crypto_sign_ed25519_ref10_sc_muladd": _crypto_sign_ed25519_ref10_sc_muladd, "_crypto_sign_ed25519_ref10_fe_add": _crypto_sign_ed25519_ref10_fe_add, "_free": _free, "_crypto_sign_ed25519_ref10_fe_invert": _crypto_sign_ed25519_ref10_fe_invert, "_crypto_sign_ed25519_ref10_fe_1": _crypto_sign_ed25519_ref10_fe_1, "_crypto_sign_edwards25519sha512batch_ref10_open": _crypto_sign_edwards25519sha512batch_ref10_open, "_crypto_sign_ed25519_ref10_fe_mul": _crypto_sign_ed25519_ref10_fe_mul, "_crypto_sign_ed25519_ref10_ge_scalarmult_base": _crypto_sign_ed25519_ref10_ge_scalarmult_base, "_crypto_sign_ed25519_ref10_fe_frombytes": _crypto_sign_ed25519_ref10_fe_frombytes, "_crypto_sign_ed25519_ref10_sc_reduce": _crypto_sign_ed25519_ref10_sc_reduce, "_sph_sha384": _sph_sha384, "_sph_sha512_init": _sph_sha512_init, "STACKTOP": STACKTOP, "STACK_MAX": STACK_MAX, "tempDoublePtr": tempDoublePtr, "ABORT": ABORT, "cttz_i8": cttz_i8, "ctlz_i8": ctlz_i8, "NaN": NaN, "Infinity": Infinity }, buffer); var _curve25519_verify = Module["_curve25519_verify"] = asm["_curve25519_verify"]; var _curve25519_sign = Module["_curve25519_sign"] = asm["_curve25519_sign"]; var _memmove = Module["_memmove"] = asm["_memmove"]; var _strlen = Module["_strlen"] = asm["_strlen"]; var _memset = Module["_memset"] = asm["_memset"]; var _memcpy = Module["_memcpy"] = asm["_memcpy"]; var dynCall_ii = Module["dynCall_ii"] = asm["dynCall_ii"]; var dynCall_v = Module["dynCall_v"] = asm["dynCall_v"]; var dynCall_iii = Module["dynCall_iii"] = asm["dynCall_iii"]; var dynCall_vi = Module["dynCall_vi"] = asm["dynCall_vi"]; Runtime.stackAlloc = function(size) { return asm['stackAlloc'](size) }; Runtime.stackSave = function() { return asm['stackSave']() }; Runtime.stackRestore = function(top) { asm['stackRestore'](top) }; // TODO: strip out parts of this we do not need //======= begin closure i64 code ======= // Copyright 2009 The Closure Library Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS-IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /** * @fileoverview Defines a Long class for representing a 64-bit two's-complement * integer value, which faithfully simulates the behavior of a Java "long". This * implementation is derived from LongLib in GWT. * */ var i64Math = (function() { // Emscripten wrapper var goog = { math: {} }; /** * Constructs a 64-bit two's-complement integer, given its low and high 32-bit * values as *signed* integers. See the from* functions below for more * convenient ways of constructing Longs. * * The internal representation of a long is the two given signed, 32-bit values. * We use 32-bit pieces because these are the size of integers on which * Javascript performs bit-operations. For operations like addition and * multiplication, we split each number into 16-bit pieces, which can easily be * multiplied within Javascript's floating-point representation without overflow * or change in sign. * * In the algorithms below, we frequently reduce the negative case to the * positive case by negating the input(s) and then post-processing the result. * Note that we must ALWAYS check specially whether those values are MIN_VALUE * (-2^63) because -MIN_VALUE == MIN_VALUE (since 2^63 cannot be represented as * a positive number, it overflows back into a negative). Not handling this * case would often result in infinite recursion. * * @param {number} low The low (signed) 32 bits of the long. * @param {number} high The high (signed) 32 bits of the long. * @constructor */ goog.math.Long = function(low, high) { /** * @type {number} * @private */ this.low_ = low | 0; // force into 32 signed bits. /** * @type {number} * @private */ this.high_ = high | 0; // force into 32 signed bits. }; // NOTE: Common constant values ZERO, ONE, NEG_ONE, etc. are defined below the // from* methods on which they depend. /** * A cache of the Long representations of small integer values. * @type {!Object} * @private */ goog.math.Long.IntCache_ = {}; /** * Returns a Long representing the given (32-bit) integer value. * @param {number} value The 32-bit integer in question. * @return {!goog.math.Long} The corresponding Long value. */ goog.math.Long.fromInt = function(value) { if (-128 <= value && value < 128) { var cachedObj = goog.math.Long.IntCache_[value]; if (cachedObj) { return cachedObj; } } var obj = new goog.math.Long(value | 0, value < 0 ? -1 : 0); if (-128 <= value && value < 128) { goog.math.Long.IntCache_[value] = obj; } return obj; }; /** * Returns a Long representing the given value, provided that it is a finite * number. Otherwise, zero is returned. * @param {number} value The number in question. * @return {!goog.math.Long} The corresponding Long value. */ goog.math.Long.fromNumber = function(value) { if (isNaN(value) || !isFinite(value)) { return goog.math.Long.ZERO; } else if (value <= -goog.math.Long.TWO_PWR_63_DBL_) { return goog.math.Long.MIN_VALUE; } else if (value + 1 >= goog.math.Long.TWO_PWR_63_DBL_) { return goog.math.Long.MAX_VALUE; } else if (value < 0) { return goog.math.Long.fromNumber(-value).negate(); } else { return new goog.math.Long( (value % goog.math.Long.TWO_PWR_32_DBL_) | 0, (value / goog.math.Long.TWO_PWR_32_DBL_) | 0); } }; /** * Returns a Long representing the 64-bit integer that comes by concatenating * the given high and low bits. Each is assumed to use 32 bits. * @param {number} lowBits The low 32-bits. * @param {number} highBits The high 32-bits. * @return {!goog.math.Long} The corresponding Long value. */ goog.math.Long.fromBits = function(lowBits, highBits) { return new goog.math.Long(lowBits, highBits); }; /** * Returns a Long representation of the given string, written using the given * radix. * @param {string} str The textual representation of the Long. * @param {number=} opt_radix The radix in which the text is written. * @return {!goog.math.Long} The corresponding Long value. */ goog.math.Long.fromString = function(str, opt_radix) { if (str.length == 0) { throw Error('number format error: empty string'); } var radix = opt_radix || 10; if (radix < 2 || 36 < radix) { throw Error('radix out of range: ' + radix); } if (str.charAt(0) == '-') { return goog.math.Long.fromString(str.substring(1), radix).negate(); } else if (str.indexOf('-') >= 0) { throw Error('number format error: interior "-" character: ' + str); } // Do several (8) digits each time through the loop, so as to // minimize the calls to the very expensive emulated div. var radixToPower = goog.math.Long.fromNumber(Math.pow(radix, 8)); var result = goog.math.Long.ZERO; for (var i = 0; i < str.length; i += 8) { var size = Math.min(8, str.length - i); var value = parseInt(str.substring(i, i + size), radix); if (size < 8) { var power = goog.math.Long.fromNumber(Math.pow(radix, size)); result = result.multiply(power).add(goog.math.Long.fromNumber(value)); } else { result = result.multiply(radixToPower); result = result.add(goog.math.Long.fromNumber(value)); } } return result; }; // NOTE: the compiler should inline these constant values below and then remove // these variables, so there should be no runtime penalty for these. /** * Number used repeated below in calculations. This must appear before the * first call to any from* function below. * @type {number} * @private */ goog.math.Long.TWO_PWR_16_DBL_ = 1 << 16; /** * @type {number} * @private */ goog.math.Long.TWO_PWR_24_DBL_ = 1 << 24; /** * @type {number} * @private */ goog.math.Long.TWO_PWR_32_DBL_ = goog.math.Long.TWO_PWR_16_DBL_ * goog.math.Long.TWO_PWR_16_DBL_; /** * @type {number} * @private */ goog.math.Long.TWO_PWR_31_DBL_ = goog.math.Long.TWO_PWR_32_DBL_ / 2; /** * @type {number} * @private */ goog.math.Long.TWO_PWR_48_DBL_ = goog.math.Long.TWO_PWR_32_DBL_ * goog.math.Long.TWO_PWR_16_DBL_; /** * @type {number} * @private */ goog.math.Long.TWO_PWR_64_DBL_ = goog.math.Long.TWO_PWR_32_DBL_ * goog.math.Long.TWO_PWR_32_DBL_; /** * @type {number} * @private */ goog.math.Long.TWO_PWR_63_DBL_ = goog.math.Long.TWO_PWR_64_DBL_ / 2; /** @type {!goog.math.Long} */ goog.math.Long.ZERO = goog.math.Long.fromInt(0); /** @type {!goog.math.Long} */ goog.math.Long.ONE = goog.math.Long.fromInt(1); /** @type {!goog.math.Long} */ goog.math.Long.NEG_ONE = goog.math.Long.fromInt(-1); /** @type {!goog.math.Long} */ goog.math.Long.MAX_VALUE = goog.math.Long.fromBits(0xFFFFFFFF | 0, 0x7FFFFFFF | 0); /** @type {!goog.math.Long} */ goog.math.Long.MIN_VALUE = goog.math.Long.fromBits(0, 0x80000000 | 0); /** * @type {!goog.math.Long} * @private */ goog.math.Long.TWO_PWR_24_ = goog.math.Long.fromInt(1 << 24); /** @return {number} The value, assuming it is a 32-bit integer. */ goog.math.Long.prototype.toInt = function() { return this.low_; }; /** @return {number} The closest floating-point representation to this value. */ goog.math.Long.prototype.toNumber = function() { return this.high_ * goog.math.Long.TWO_PWR_32_DBL_ + this.getLowBitsUnsigned(); }; /** * @param {number=} opt_radix The radix in which the text should be written. * @return {string} The textual representation of this value. */ goog.math.Long.prototype.toString = function(opt_radix) { var radix = opt_radix || 10; if (radix < 2 || 36 < radix) { throw Error('radix out of range: ' + radix); } if (this.isZero()) { return '0'; } if (this.isNegative()) { if (this.equals(goog.math.Long.MIN_VALUE)) { // We need to change the Long value before it can be negated, so we remove // the bottom-most digit in this base and then recurse to do the rest. var radixLong = goog.math.Long.fromNumber(radix); var div = this.div(radixLong); var rem = div.multiply(radixLong).subtract(this); return div.toString(radix) + rem.toInt().toString(radix); } else { return '-' + this.negate().toString(radix); } } // Do several (6) digits each time through the loop, so as to // minimize the calls to the very expensive emulated div. var radixToPower = goog.math.Long.fromNumber(Math.pow(radix, 6)); var rem = this; var result = ''; while (true) { var remDiv = rem.div(radixToPower); var intval = rem.subtract(remDiv.multiply(radixToPower)).toInt(); var digits = intval.toString(radix); rem = remDiv; if (rem.isZero()) { return digits + result; } else { while (digits.length < 6) { digits = '0' + digits; } result = '' + digits + result; } } }; /** @return {number} The high 32-bits as a signed value. */ goog.math.Long.prototype.getHighBits = function() { return this.high_; }; /** @return {number} The low 32-bits as a signed value. */ goog.math.Long.prototype.getLowBits = function() { return this.low_; }; /** @return {number} The low 32-bits as an unsigned value. */ goog.math.Long.prototype.getLowBitsUnsigned = function() { return (this.low_ >= 0) ? this.low_ : goog.math.Long.TWO_PWR_32_DBL_ + this.low_; }; /** * @return {number} Returns the number of bits needed to represent the absolute * value of this Long. */ goog.math.Long.prototype.getNumBitsAbs = function() { if (this.isNegative()) { if (this.equals(goog.math.Long.MIN_VALUE)) { return 64; } else { return this.negate().getNumBitsAbs(); } } else { var val = this.high_ != 0 ? this.high_ : this.low_; for (var bit = 31; bit > 0; bit--) { if ((val & (1 << bit)) != 0) { break; } } return this.high_ != 0 ? bit + 33 : bit + 1; } }; /** @return {boolean} Whether this value is zero. */ goog.math.Long.prototype.isZero = function() { return this.high_ == 0 && this.low_ == 0; }; /** @return {boolean} Whether this value is negative. */ goog.math.Long.prototype.isNegative = function() { return this.high_ < 0; }; /** @return {boolean} Whether this value is odd. */ goog.math.Long.prototype.isOdd = function() { return (this.low_ & 1) == 1; }; /** * @param {goog.math.Long} other Long to compare against. * @return {boolean} Whether this Long equals the other. */ goog.math.Long.prototype.equals = function(other) { return (this.high_ == other.high_) && (this.low_ == other.low_); }; /** * @param {goog.math.Long} other Long to compare against. * @return {boolean} Whether this Long does not equal the other. */ goog.math.Long.prototype.notEquals = function(other) { return (this.high_ != other.high_) || (this.low_ != other.low_); }; /** * @param {goog.math.Long} other Long to compare against. * @return {boolean} Whether this Long is less than the other. */ goog.math.Long.prototype.lessThan = function(other) { return this.compare(other) < 0; }; /** * @param {goog.math.Long} other Long to compare against. * @return {boolean} Whether this Long is less than or equal to the other. */ goog.math.Long.prototype.lessThanOrEqual = function(other) { return this.compare(other) <= 0; }; /** * @param {goog.math.Long} other Long to compare against. * @return {boolean} Whether this Long is greater than the other. */ goog.math.Long.prototype.greaterThan = function(other) { return this.compare(other) > 0; }; /** * @param {goog.math.Long} other Long to compare against. * @return {boolean} Whether this Long is greater than or equal to the other. */ goog.math.Long.prototype.greaterThanOrEqual = function(other) { return this.compare(other) >= 0; }; /** * Compares this Long with the given one. * @param {goog.math.Long} other Long to compare against. * @return {number} 0 if they are the same, 1 if the this is greater, and -1 * if the given one is greater. */ goog.math.Long.prototype.compare = function(other) { if (this.equals(other)) { return 0; } var thisNeg = this.isNegative(); var otherNeg = other.isNegative(); if (thisNeg && !otherNeg) { return -1; } if (!thisNeg && otherNeg) { return 1; } // at this point, the signs are the same, so subtraction will not overflow if (this.subtract(other).isNegative()) { return -1; } else { return 1; } }; /** @return {!goog.math.Long} The negation of this value. */ goog.math.Long.prototype.negate = function() { if (this.equals(goog.math.Long.MIN_VALUE)) { return goog.math.Long.MIN_VALUE; } else { return this.not().add(goog.math.Long.ONE); } }; /** * Returns the sum of this and the given Long. * @param {goog.math.Long} other Long to add to this one. * @return {!goog.math.Long} The sum of this and the given Long. */ goog.math.Long.prototype.add = function(other) { // Divide each number into 4 chunks of 16 bits, and then sum the chunks. var a48 = this.high_ >>> 16; var a32 = this.high_ & 0xFFFF; var a16 = this.low_ >>> 16; var a00 = this.low_ & 0xFFFF; var b48 = other.high_ >>> 16; var b32 = other.high_ & 0xFFFF; var b16 = other.low_ >>> 16; var b00 = other.low_ & 0xFFFF; var c48 = 0, c32 = 0, c16 = 0, c00 = 0; c00 += a00 + b00; c16 += c00 >>> 16; c00 &= 0xFFFF; c16 += a16 + b16; c32 += c16 >>> 16; c16 &= 0xFFFF; c32 += a32 + b32; c48 += c32 >>> 16; c32 &= 0xFFFF; c48 += a48 + b48; c48 &= 0xFFFF; return goog.math.Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32); }; /** * Returns the difference of this and the given Long. * @param {goog.math.Long} other Long to subtract from this. * @return {!goog.math.Long} The difference of this and the given Long. */ goog.math.Long.prototype.subtract = function(other) { return this.add(other.negate()); }; /** * Returns the product of this and the given long. * @param {goog.math.Long} other Long to multiply with this. * @return {!goog.math.Long} The product of this and the other. */ goog.math.Long.prototype.multiply = function(other) { if (this.isZero()) { return goog.math.Long.ZERO; } else if (other.isZero()) { return goog.math.Long.ZERO; } if (this.equals(goog.math.Long.MIN_VALUE)) { return other.isOdd() ? goog.math.Long.MIN_VALUE : goog.math.Long.ZERO; } else if (other.equals(goog.math.Long.MIN_VALUE)) { return this.isOdd() ? goog.math.Long.MIN_VALUE : goog.math.Long.ZERO; } if (this.isNegative()) { if (other.isNegative()) { return this.negate().multiply(other.negate()); } else { return this.negate().multiply(other).negate(); } } else if (other.isNegative()) { return this.multiply(other.negate()).negate(); } // If both longs are small, use float multiplication if (this.lessThan(goog.math.Long.TWO_PWR_24_) && other.lessThan(goog.math.Long.TWO_PWR_24_)) { return goog.math.Long.fromNumber(this.toNumber() * other.toNumber()); } // Divide each long into 4 chunks of 16 bits, and then add up 4x4 products. // We can skip products that would overflow. var a48 = this.high_ >>> 16; var a32 = this.high_ & 0xFFFF; var a16 = this.low_ >>> 16; var a00 = this.low_ & 0xFFFF; var b48 = other.high_ >>> 16; var b32 = other.high_ & 0xFFFF; var b16 = other.low_ >>> 16; var b00 = other.low_ & 0xFFFF; var c48 = 0, c32 = 0, c16 = 0, c00 = 0; c00 += a00 * b00; c16 += c00 >>> 16; c00 &= 0xFFFF; c16 += a16 * b00; c32 += c16 >>> 16; c16 &= 0xFFFF; c16 += a00 * b16; c32 += c16 >>> 16; c16 &= 0xFFFF; c32 += a32 * b00; c48 += c32 >>> 16; c32 &= 0xFFFF; c32 += a16 * b16; c48 += c32 >>> 16; c32 &= 0xFFFF; c32 += a00 * b32; c48 += c32 >>> 16; c32 &= 0xFFFF; c48 += a48 * b00 + a32 * b16 + a16 * b32 + a00 * b48; c48 &= 0xFFFF; return goog.math.Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32); }; /** * Returns this Long divided by the given one. * @param {goog.math.Long} other Long by which to divide. * @return {!goog.math.Long} This Long divided by the given one. */ goog.math.Long.prototype.div = function(other) { if (other.isZero()) { throw Error('division by zero'); } else if (this.isZero()) { return goog.math.Long.ZERO; } if (this.equals(goog.math.Long.MIN_VALUE)) { if (other.equals(goog.math.Long.ONE) || other.equals(goog.math.Long.NEG_ONE)) { return goog.math.Long.MIN_VALUE; // recall that -MIN_VALUE == MIN_VALUE } else if (other.equals(goog.math.Long.MIN_VALUE)) { return goog.math.Long.ONE; } else { // At this point, we have |other| >= 2, so |this/other| < |MIN_VALUE|. var halfThis = this.shiftRight(1); var approx = halfThis.div(other).shiftLeft(1); if (approx.equals(goog.math.Long.ZERO)) { return other.isNegative() ? goog.math.Long.ONE : goog.math.Long.NEG_ONE; } else { var rem = this.subtract(other.multiply(approx)); var result = approx.add(rem.div(other)); return result; } } } else if (other.equals(goog.math.Long.MIN_VALUE)) { return goog.math.Long.ZERO; } if (this.isNegative()) { if (other.isNegative()) { return this.negate().div(other.negate()); } else { return this.negate().div(other).negate(); } } else if (other.isNegative()) { return this.div(other.negate()).negate(); } // Repeat the following until the remainder is less than other: find a // floating-point that approximates remainder / other *from below*, add this // into the result, and subtract it from the remainder. It is critical that // the approximate value is less than or equal to the real value so that the // remainder never becomes negative. var res = goog.math.Long.ZERO; var rem = this; while (rem.greaterThanOrEqual(other)) { // Approximate the result of division. This may be a little greater or // smaller than the actual value. var approx = Math.max(1, Math.floor(rem.toNumber() / other.toNumber())); // We will tweak the approximate result by changing it in the 48-th digit or // the smallest non-fractional digit, whichever is larger. var log2 = Math.ceil(Math.log(approx) / Math.LN2); var delta = (log2 <= 48) ? 1 : Math.pow(2, log2 - 48); // Decrease the approximation until it is smaller than the remainder. Note // that if it is too large, the product overflows and is negative. var approxRes = goog.math.Long.fromNumber(approx); var approxRem = approxRes.multiply(other); while (approxRem.isNegative() || approxRem.greaterThan(rem)) { approx -= delta; approxRes = goog.math.Long.fromNumber(approx); approxRem = approxRes.multiply(other); } // We know the answer can't be zero... and actually, zero would cause // infinite recursion since we would make no progress. if (approxRes.isZero()) { approxRes = goog.math.Long.ONE; } res = res.add(approxRes); rem = rem.subtract(approxRem); } return res; }; /** * Returns this Long modulo the given one. * @param {goog.math.Long} other Long by which to mod. * @return {!goog.math.Long} This Long modulo the given one. */ goog.math.Long.prototype.modulo = function(other) { return this.subtract(this.div(other).multiply(other)); }; /** @return {!goog.math.Long} The bitwise-NOT of this value. */ goog.math.Long.prototype.not = function() { return goog.math.Long.fromBits(~this.low_, ~this.high_); }; /** * Returns the bitwise-AND of this Long and the given one. * @param {goog.math.Long} other The Long with which to AND. * @return {!goog.math.Long} The bitwise-AND of this and the other. */ goog.math.Long.prototype.and = function(other) { return goog.math.Long.fromBits(this.low_ & other.low_, this.high_ & other.high_); }; /** * Returns the bitwise-OR of this Long and the given one. * @param {goog.math.Long} other The Long with which to OR. * @return {!goog.math.Long} The bitwise-OR of this and the other. */ goog.math.Long.prototype.or = function(other) { return goog.math.Long.fromBits(this.low_ | other.low_, this.high_ | other.high_); }; /** * Returns the bitwise-XOR of this Long and the given one. * @param {goog.math.Long} other The Long with which to XOR. * @return {!goog.math.Long} The bitwise-XOR of this and the other. */ goog.math.Long.prototype.xor = function(other) { return goog.math.Long.fromBits(this.low_ ^ other.low_, this.high_ ^ other.high_); }; /** * Returns this Long with bits shifted to the left by the given amount. * @param {number} numBits The number of bits by which to shift. * @return {!goog.math.Long} This shifted to the left by the given amount. */ goog.math.Long.prototype.shiftLeft = function(numBits) { numBits &= 63; if (numBits == 0) { return this; } else { var low = this.low_; if (numBits < 32) { var high = this.high_; return goog.math.Long.fromBits( low << numBits, (high << numBits) | (low >>> (32 - numBits))); } else { return goog.math.Long.fromBits(0, low << (numBits - 32)); } } }; /** * Returns this Long with bits shifted to the right by the given amount. * @param {number} numBits The number of bits by which to shift. * @return {!goog.math.Long} This shifted to the right by the given amount. */ goog.math.Long.prototype.shiftRight = function(numBits) { numBits &= 63; if (numBits == 0) { return this; } else { var high = this.high_; if (numBits < 32) { var low = this.low_; return goog.math.Long.fromBits( (low >>> numBits) | (high << (32 - numBits)), high >> numBits); } else { return goog.math.Long.fromBits( high >> (numBits - 32), high >= 0 ? 0 : -1); } } }; /** * Returns this Long with bits shifted to the right by the given amount, with * the new top bits matching the current sign bit. * @param {number} numBits The number of bits by which to shift. * @return {!goog.math.Long} This shifted to the right by the given amount, with * zeros placed into the new leading bits. */ goog.math.Long.prototype.shiftRightUnsigned = function(numBits) { numBits &= 63; if (numBits == 0) { return this; } else { var high = this.high_; if (numBits < 32) { var low = this.low_; return goog.math.Long.fromBits( (low >>> numBits) | (high << (32 - numBits)), high >>> numBits); } else if (numBits == 32) { return goog.math.Long.fromBits(high, 0); } else { return goog.math.Long.fromBits(high >>> (numBits - 32), 0); } } }; //======= begin jsbn ======= var navigator = { appName: 'Modern Browser' }; // polyfill a little // Copyright (c) 2005 Tom Wu // All Rights Reserved. // http://www-cs-students.stanford.edu/~tjw/jsbn/ /* * Copyright (c) 2003-2005 Tom Wu * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. * * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL, * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * In addition, the following condition applies: * * All redistributions must retain an intact copy of this copyright notice * and disclaimer. */ // Basic JavaScript BN library - subset useful for RSA encryption. // Bits per digit var dbits; // JavaScript engine analysis var canary = 0xdeadbeefcafe; var j_lm = ((canary&0xffffff)==0xefcafe); // (public) Constructor function BigInteger(a,b,c) { if(a != null) if("number" == typeof a) this.fromNumber(a,b,c); else if(b == null && "string" != typeof a) this.fromString(a,256); else this.fromString(a,b); } // return new, unset BigInteger function nbi() { return new BigInteger(null); } // am: Compute w_j += (x*this_i), propagate carries, // c is initial carry, returns final carry. // c < 3*dvalue, x < 2*dvalue, this_i < dvalue // We need to select the fastest one that works in this environment. // am1: use a single mult and divide to get the high bits, // max digit bits should be 26 because // max internal value = 2*dvalue^2-2*dvalue (< 2^53) function am1(i,x,w,j,c,n) { while(--n >= 0) { var v = x*this[i++]+w[j]+c; c = Math.floor(v/0x4000000); w[j++] = v&0x3ffffff; } return c; } // am2 avoids a big mult-and-extract completely. // Max digit bits should be <= 30 because we do bitwise ops // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) function am2(i,x,w,j,c,n) { var xl = x&0x7fff, xh = x>>15; while(--n >= 0) { var l = this[i]&0x7fff; var h = this[i++]>>15; var m = xh*l+h*xl; l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff); c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); w[j++] = l&0x3fffffff; } return c; } // Alternately, set max digit bits to 28 since some // browsers slow down when dealing with 32-bit numbers. function am3(i,x,w,j,c,n) { var xl = x&0x3fff, xh = x>>14; while(--n >= 0) { var l = this[i]&0x3fff; var h = this[i++]>>14; var m = xh*l+h*xl; l = xl*l+((m&0x3fff)<<14)+w[j]+c; c = (l>>28)+(m>>14)+xh*h; w[j++] = l&0xfffffff; } return c; } if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) { BigInteger.prototype.am = am2; dbits = 30; } else if(j_lm && (navigator.appName != "Netscape")) { BigInteger.prototype.am = am1; dbits = 26; } else { // Mozilla/Netscape seems to prefer am3 BigInteger.prototype.am = am3; dbits = 28; } BigInteger.prototype.DB = dbits; BigInteger.prototype.DM = ((1<= 0; --i) r[i] = this[i]; r.t = this.t; r.s = this.s; } // (protected) set from integer value x, -DV <= x < DV function bnpFromInt(x) { this.t = 1; this.s = (x<0)?-1:0; if(x > 0) this[0] = x; else if(x < -1) this[0] = x+DV; else this.t = 0; } // return bigint initialized to value function nbv(i) { var r = nbi(); r.fromInt(i); return r; } // (protected) set from string and radix function bnpFromString(s,b) { var k; if(b == 16) k = 4; else if(b == 8) k = 3; else if(b == 256) k = 8; // byte array else if(b == 2) k = 1; else if(b == 32) k = 5; else if(b == 4) k = 2; else { this.fromRadix(s,b); return; } this.t = 0; this.s = 0; var i = s.length, mi = false, sh = 0; while(--i >= 0) { var x = (k==8)?s[i]&0xff:intAt(s,i); if(x < 0) { if(s.charAt(i) == "-") mi = true; continue; } mi = false; if(sh == 0) this[this.t++] = x; else if(sh+k > this.DB) { this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<>(this.DB-sh)); } else this[this.t-1] |= x<= this.DB) sh -= this.DB; } if(k == 8 && (s[0]&0x80) != 0) { this.s = -1; if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)< 0 && this[this.t-1] == c) --this.t; } // (public) return string representation in given radix function bnToString(b) { if(this.s < 0) return "-"+this.negate().toString(b); var k; if(b == 16) k = 4; else if(b == 8) k = 3; else if(b == 2) k = 1; else if(b == 32) k = 5; else if(b == 4) k = 2; else return this.toRadix(b); var km = (1< 0) { if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); } while(i >= 0) { if(p < k) { d = (this[i]&((1<>(p+=this.DB-k); } else { d = (this[i]>>(p-=k))&km; if(p <= 0) { p += this.DB; --i; } } if(d > 0) m = true; if(m) r += int2char(d); } } return m?r:"0"; } // (public) -this function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; } // (public) |this| function bnAbs() { return (this.s<0)?this.negate():this; } // (public) return + if this > a, - if this < a, 0 if equal function bnCompareTo(a) { var r = this.s-a.s; if(r != 0) return r; var i = this.t; r = i-a.t; if(r != 0) return (this.s<0)?-r:r; while(--i >= 0) if((r=this[i]-a[i]) != 0) return r; return 0; } // returns bit length of the integer x function nbits(x) { var r = 1, t; if((t=x>>>16) != 0) { x = t; r += 16; } if((t=x>>8) != 0) { x = t; r += 8; } if((t=x>>4) != 0) { x = t; r += 4; } if((t=x>>2) != 0) { x = t; r += 2; } if((t=x>>1) != 0) { x = t; r += 1; } return r; } // (public) return the number of bits in "this" function bnBitLength() { if(this.t <= 0) return 0; return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM)); } // (protected) r = this << n*DB function bnpDLShiftTo(n,r) { var i; for(i = this.t-1; i >= 0; --i) r[i+n] = this[i]; for(i = n-1; i >= 0; --i) r[i] = 0; r.t = this.t+n; r.s = this.s; } // (protected) r = this >> n*DB function bnpDRShiftTo(n,r) { for(var i = n; i < this.t; ++i) r[i-n] = this[i]; r.t = Math.max(this.t-n,0); r.s = this.s; } // (protected) r = this << n function bnpLShiftTo(n,r) { var bs = n%this.DB; var cbs = this.DB-bs; var bm = (1<= 0; --i) { r[i+ds+1] = (this[i]>>cbs)|c; c = (this[i]&bm)<= 0; --i) r[i] = 0; r[ds] = c; r.t = this.t+ds+1; r.s = this.s; r.clamp(); } // (protected) r = this >> n function bnpRShiftTo(n,r) { r.s = this.s; var ds = Math.floor(n/this.DB); if(ds >= this.t) { r.t = 0; return; } var bs = n%this.DB; var cbs = this.DB-bs; var bm = (1<>bs; for(var i = ds+1; i < this.t; ++i) { r[i-ds-1] |= (this[i]&bm)<>bs; } if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<>= this.DB; } if(a.t < this.t) { c -= a.s; while(i < this.t) { c += this[i]; r[i++] = c&this.DM; c >>= this.DB; } c += this.s; } else { c += this.s; while(i < a.t) { c -= a[i]; r[i++] = c&this.DM; c >>= this.DB; } c -= a.s; } r.s = (c<0)?-1:0; if(c < -1) r[i++] = this.DV+c; else if(c > 0) r[i++] = c; r.t = i; r.clamp(); } // (protected) r = this * a, r != this,a (HAC 14.12) // "this" should be the larger one if appropriate. function bnpMultiplyTo(a,r) { var x = this.abs(), y = a.abs(); var i = x.t; r.t = i+y.t; while(--i >= 0) r[i] = 0; for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t); r.s = 0; r.clamp(); if(this.s != a.s) BigInteger.ZERO.subTo(r,r); } // (protected) r = this^2, r != this (HAC 14.16) function bnpSquareTo(r) { var x = this.abs(); var i = r.t = 2*x.t; while(--i >= 0) r[i] = 0; for(i = 0; i < x.t-1; ++i) { var c = x.am(i,x[i],r,2*i,0,1); if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) { r[i+x.t] -= x.DV; r[i+x.t+1] = 1; } } if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1); r.s = 0; r.clamp(); } // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) // r != q, this != m. q or r may be null. function bnpDivRemTo(m,q,r) { var pm = m.abs(); if(pm.t <= 0) return; var pt = this.abs(); if(pt.t < pm.t) { if(q != null) q.fromInt(0); if(r != null) this.copyTo(r); return; } if(r == null) r = nbi(); var y = nbi(), ts = this.s, ms = m.s; var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); } else { pm.copyTo(y); pt.copyTo(r); } var ys = y.t; var y0 = y[ys-1]; if(y0 == 0) return; var yt = y0*(1<1)?y[ys-2]>>this.F2:0); var d1 = this.FV/yt, d2 = (1<= 0) { r[r.t++] = 1; r.subTo(t,r); } BigInteger.ONE.dlShiftTo(ys,t); t.subTo(y,y); // "negative" y so we can replace sub with am later while(y.t < ys) y[y.t++] = 0; while(--j >= 0) { // Estimate quotient digit var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2); if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out y.dlShiftTo(j,t); r.subTo(t,r); while(r[i] < --qd) r.subTo(t,r); } } if(q != null) { r.drShiftTo(ys,q); if(ts != ms) BigInteger.ZERO.subTo(q,q); } r.t = ys; r.clamp(); if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder if(ts < 0) BigInteger.ZERO.subTo(r,r); } // (public) this mod a function bnMod(a) { var r = nbi(); this.abs().divRemTo(a,null,r); if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r); return r; } // Modular reduction using "classic" algorithm function Classic(m) { this.m = m; } function cConvert(x) { if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); else return x; } function cRevert(x) { return x; } function cReduce(x) { x.divRemTo(this.m,null,x); } function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); } Classic.prototype.convert = cConvert; Classic.prototype.revert = cRevert; Classic.prototype.reduce = cReduce; Classic.prototype.mulTo = cMulTo; Classic.prototype.sqrTo = cSqrTo; // (protected) return "-1/this % 2^DB"; useful for Mont. reduction // justification: // xy == 1 (mod m) // xy = 1+km // xy(2-xy) = (1+km)(1-km) // x[y(2-xy)] = 1-k^2m^2 // x[y(2-xy)] == 1 (mod m^2) // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 // should reduce x and y(2-xy) by m^2 at each step to keep size bounded. // JS multiply "overflows" differently from C/C++, so care is needed here. function bnpInvDigit() { if(this.t < 1) return 0; var x = this[0]; if((x&1) == 0) return 0; var y = x&3; // y == 1/x mod 2^2 y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4 y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8 y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16 // last step - calculate inverse mod DV directly; // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits // we really want the negative inverse, and -DV < y < DV return (y>0)?this.DV-y:-y; } // Montgomery reduction function Montgomery(m) { this.m = m; this.mp = m.invDigit(); this.mpl = this.mp&0x7fff; this.mph = this.mp>>15; this.um = (1<<(m.DB-15))-1; this.mt2 = 2*m.t; } // xR mod m function montConvert(x) { var r = nbi(); x.abs().dlShiftTo(this.m.t,r); r.divRemTo(this.m,null,r); if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r); return r; } // x/R mod m function montRevert(x) { var r = nbi(); x.copyTo(r); this.reduce(r); return r; } // x = x/R mod m (HAC 14.32) function montReduce(x) { while(x.t <= this.mt2) // pad x so am has enough room later x[x.t++] = 0; for(var i = 0; i < this.m.t; ++i) { // faster way of calculating u0 = x[i]*mp mod DV var j = x[i]&0x7fff; var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM; // use am to combine the multiply-shift-add into one call j = i+this.m.t; x[j] += this.m.am(0,u0,x,i,0,this.m.t); // propagate carry while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; } } x.clamp(); x.drShiftTo(this.m.t,x); if(x.compareTo(this.m) >= 0) x.subTo(this.m,x); } // r = "x^2/R mod m"; x != r function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); } // r = "xy/R mod m"; x,y != r function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } Montgomery.prototype.convert = montConvert; Montgomery.prototype.revert = montRevert; Montgomery.prototype.reduce = montReduce; Montgomery.prototype.mulTo = montMulTo; Montgomery.prototype.sqrTo = montSqrTo; // (protected) true iff this is even function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; } // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) function bnpExp(e,z) { if(e > 0xffffffff || e < 1) return BigInteger.ONE; var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; g.copyTo(r); while(--i >= 0) { z.sqrTo(r,r2); if((e&(1< 0) z.mulTo(r2,g,r); else { var t = r; r = r2; r2 = t; } } return z.revert(r); } // (public) this^e % m, 0 <= e < 2^32 function bnModPowInt(e,m) { var z; if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); return this.exp(e,z); } // protected BigInteger.prototype.copyTo = bnpCopyTo; BigInteger.prototype.fromInt = bnpFromInt; BigInteger.prototype.fromString = bnpFromString; BigInteger.prototype.clamp = bnpClamp; BigInteger.prototype.dlShiftTo = bnpDLShiftTo; BigInteger.prototype.drShiftTo = bnpDRShiftTo; BigInteger.prototype.lShiftTo = bnpLShiftTo; BigInteger.prototype.rShiftTo = bnpRShiftTo; BigInteger.prototype.subTo = bnpSubTo; BigInteger.prototype.multiplyTo = bnpMultiplyTo; BigInteger.prototype.squareTo = bnpSquareTo; BigInteger.prototype.divRemTo = bnpDivRemTo; BigInteger.prototype.invDigit = bnpInvDigit; BigInteger.prototype.isEven = bnpIsEven; BigInteger.prototype.exp = bnpExp; // public BigInteger.prototype.toString = bnToString; BigInteger.prototype.negate = bnNegate; BigInteger.prototype.abs = bnAbs; BigInteger.prototype.compareTo = bnCompareTo; BigInteger.prototype.bitLength = bnBitLength; BigInteger.prototype.mod = bnMod; BigInteger.prototype.modPowInt = bnModPowInt; // "constants" BigInteger.ZERO = nbv(0); BigInteger.ONE = nbv(1); // jsbn2 stuff // (protected) convert from radix string function bnpFromRadix(s,b) { this.fromInt(0); if(b == null) b = 10; var cs = this.chunkSize(b); var d = Math.pow(b,cs), mi = false, j = 0, w = 0; for(var i = 0; i < s.length; ++i) { var x = intAt(s,i); if(x < 0) { if(s.charAt(i) == "-" && this.signum() == 0) mi = true; continue; } w = b*w+x; if(++j >= cs) { this.dMultiply(d); this.dAddOffset(w,0); j = 0; w = 0; } } if(j > 0) { this.dMultiply(Math.pow(b,j)); this.dAddOffset(w,0); } if(mi) BigInteger.ZERO.subTo(this,this); } // (protected) return x s.t. r^x < DV function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); } // (public) 0 if this == 0, 1 if this > 0 function bnSigNum() { if(this.s < 0) return -1; else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0; else return 1; } // (protected) this *= n, this >= 0, 1 < n < DV function bnpDMultiply(n) { this[this.t] = this.am(0,n-1,this,0,0,this.t); ++this.t; this.clamp(); } // (protected) this += n << w words, this >= 0 function bnpDAddOffset(n,w) { if(n == 0) return; while(this.t <= w) this[this.t++] = 0; this[w] += n; while(this[w] >= this.DV) { this[w] -= this.DV; if(++w >= this.t) this[this.t++] = 0; ++this[w]; } } // (protected) convert to radix string function bnpToRadix(b) { if(b == null) b = 10; if(this.signum() == 0 || b < 2 || b > 36) return "0"; var cs = this.chunkSize(b); var a = Math.pow(b,cs); var d = nbv(a), y = nbi(), z = nbi(), r = ""; this.divRemTo(d,y,z); while(y.signum() > 0) { r = (a+z.intValue()).toString(b).substr(1) + r; y.divRemTo(d,y,z); } return z.intValue().toString(b) + r; } // (public) return value as integer function bnIntValue() { if(this.s < 0) { if(this.t == 1) return this[0]-this.DV; else if(this.t == 0) return -1; } else if(this.t == 1) return this[0]; else if(this.t == 0) return 0; // assumes 16 < DB < 32 return ((this[1]&((1<<(32-this.DB))-1))<>= this.DB; } if(a.t < this.t) { c += a.s; while(i < this.t) { c += this[i]; r[i++] = c&this.DM; c >>= this.DB; } c += this.s; } else { c += this.s; while(i < a.t) { c += a[i]; r[i++] = c&this.DM; c >>= this.DB; } c += a.s; } r.s = (c<0)?-1:0; if(c > 0) r[i++] = c; else if(c < -1) r[i++] = this.DV+c; r.t = i; r.clamp(); } BigInteger.prototype.fromRadix = bnpFromRadix; BigInteger.prototype.chunkSize = bnpChunkSize; BigInteger.prototype.signum = bnSigNum; BigInteger.prototype.dMultiply = bnpDMultiply; BigInteger.prototype.dAddOffset = bnpDAddOffset; BigInteger.prototype.toRadix = bnpToRadix; BigInteger.prototype.intValue = bnIntValue; BigInteger.prototype.addTo = bnpAddTo; //======= end jsbn ======= // Emscripten wrapper var Wrapper = { abs: function(l, h) { var x = new goog.math.Long(l, h); var ret; if (x.isNegative()) { ret = x.negate(); } else { ret = x; } HEAP32[tempDoublePtr>>2] = ret.low_; HEAP32[tempDoublePtr+4>>2] = ret.high_; }, ensureTemps: function() { if (Wrapper.ensuredTemps) return; Wrapper.ensuredTemps = true; Wrapper.two32 = new BigInteger(); Wrapper.two32.fromString('4294967296', 10); Wrapper.two64 = new BigInteger(); Wrapper.two64.fromString('18446744073709551616', 10); Wrapper.temp1 = new BigInteger(); Wrapper.temp2 = new BigInteger(); }, lh2bignum: function(l, h) { var a = new BigInteger(); a.fromString(h.toString(), 10); var b = new BigInteger(); a.multiplyTo(Wrapper.two32, b); var c = new BigInteger(); c.fromString(l.toString(), 10); var d = new BigInteger(); c.addTo(b, d); return d; }, stringify: function(l, h, unsigned) { var ret = new goog.math.Long(l, h).toString(); if (unsigned && ret[0] == '-') { // unsign slowly using jsbn bignums Wrapper.ensureTemps(); var bignum = new BigInteger(); bignum.fromString(ret, 10); ret = new BigInteger(); Wrapper.two64.addTo(bignum, ret); ret = ret.toString(10); } return ret; }, fromString: function(str, base, min, max, unsigned) { Wrapper.ensureTemps(); var bignum = new BigInteger(); bignum.fromString(str, base); var bigmin = new BigInteger(); bigmin.fromString(min, 10); var bigmax = new BigInteger(); bigmax.fromString(max, 10); if (unsigned && bignum.compareTo(BigInteger.ZERO) < 0) { var temp = new BigInteger(); bignum.addTo(Wrapper.two64, temp); bignum = temp; } var error = false; if (bignum.compareTo(bigmin) < 0) { bignum = bigmin; error = true; } else if (bignum.compareTo(bigmax) > 0) { bignum = bigmax; error = true; } var ret = goog.math.Long.fromString(bignum.toString()); // min-max checks should have clamped this to a range goog.math.Long can handle well HEAP32[tempDoublePtr>>2] = ret.low_; HEAP32[tempDoublePtr+4>>2] = ret.high_; if (error) throw 'range error'; } }; return Wrapper; })(); //======= end closure i64 code ======= // === Auto-generated postamble setup entry stuff === Module['callMain'] = function callMain(args) { assert(runDependencies == 0, 'cannot call main when async dependencies remain! (listen on __ATMAIN__)'); assert(!Module['preRun'] || Module['preRun'].length == 0, 'cannot call main when preRun functions remain to be called'); args = args || []; ensureInitRuntime(); var argc = args.length+1; function pad() { for (var i = 0; i < 4-1; i++) { argv.push(0); } } var argv = [allocate(intArrayFromString("/bin/this.program"), 'i8', ALLOC_NORMAL) ]; pad(); for (var i = 0; i < argc-1; i = i + 1) { argv.push(allocate(intArrayFromString(args[i]), 'i8', ALLOC_NORMAL)); pad(); } argv.push(0); argv = allocate(argv, 'i32', ALLOC_NORMAL); var ret; var initialStackTop = STACKTOP; try { ret = Module['_main'](argc, argv, 0); } catch(e) { if (e.name == 'ExitStatus') { return e.status; } else if (e == 'SimulateInfiniteLoop') { Module['noExitRuntime'] = true; } else { throw e; } } finally { STACKTOP = initialStackTop; } return ret; } function run(args) { args = args || Module['arguments']; if (runDependencies > 0) { Module.printErr('run() called, but dependencies remain, so not running'); return 0; } if (Module['preRun']) { if (typeof Module['preRun'] == 'function') Module['preRun'] = [Module['preRun']]; var toRun = Module['preRun']; Module['preRun'] = []; for (var i = toRun.length-1; i >= 0; i--) { toRun[i](); } if (runDependencies > 0) { // a preRun added a dependency, run will be called later return 0; } } function doRun() { ensureInitRuntime(); preMain(); var ret = 0; calledRun = true; if (Module['_main'] && shouldRunNow) { ret = Module['callMain'](args); if (!Module['noExitRuntime']) { exitRuntime(); } } if (Module['postRun']) { if (typeof Module['postRun'] == 'function') Module['postRun'] = [Module['postRun']]; while (Module['postRun'].length > 0) { Module['postRun'].pop()(); } } return ret; } if (Module['setStatus']) { Module['setStatus']('Running...'); setTimeout(function() { setTimeout(function() { Module['setStatus'](''); }, 1); if (!ABORT) doRun(); }, 1); return 0; } else { return doRun(); } } Module['run'] = Module.run = run; // {{PRE_RUN_ADDITIONS}} if (Module['preInit']) { if (typeof Module['preInit'] == 'function') Module['preInit'] = [Module['preInit']]; while (Module['preInit'].length > 0) { Module['preInit'].pop()(); } } // shouldRunNow refers to calling main(), not run(). var shouldRunNow = true; if (Module['noInitialRun']) { shouldRunNow = false; } run(); // {{POST_RUN_ADDITIONS}} // {{MODULE_ADDITIONS}}